
IMS

Base Primitive Environment

Guide and Reference

Version 9

SC18-7813-02

���

IMS

Base Primitive Environment

Guide and Reference

Version 9

SC18-7813-02

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

85.

Third Edition (December 2006) (Softcopy Only)

This edition replaces or makes obsolete the previous edition, SC18-7813-01. This edition is available in softcopy

format only. The technical changes for this version are summarized under “Summary of Changes” on page

“Summary of Changes” on page xiii.

© Copyright International Business Machines Corporation 2002, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

Tables vii

About This Book ix

Terminology and Related Publications ix

IBM Product Names Used in This Information . . . ix

How to Read Syntax Diagrams x

How to Send Your Comments xii

Summary of Changes xiii

Changes to the Current Edition of This Book for

Version 9 xiii

Changes to This Book for IMS Version 9 xiii

Library Changes for IMS Version 9 xiii

New and Revised Titles xiii

Organizational Changes xiv

Terminology Changes xiv

Accessibility features for IMS xiv

Accessibility features xiv

Keyboard navigation xiv

IBM and accessibility xv

Chapter 1. Introduction to Base Primitive

Environment 1

Chapter 2. BPE Definition and Tailoring 5

General BPE PROCLIB Member Information 5

BPE Configuration Parameter PROCLIB Member . . 5

BPECFG= LANG Parameter 6

BPECFG= TRCLEV Parameter 6

BPE Trace Table Types 8

CQS Trace Table Types 10

IMS Connect Trace Table Types 11

OM Trace Table Types 12

RM Trace Table Types 13

SCI Trace Table Types 13

BPECFG= EXITMBR Parameter 14

BPECFG= STATINTV Parameter 15

Sample BPE Configuration File 15

BPE Exit List PROCLIB Member 17

BPE EXITMBR= EXITDEF Parameter 17

BPE EXITDEF Types 18

CQS EXITDEF Types 19

HWS EXITDEF Types 19

OM EXITDEF Types 19

RM EXITDEF Types 19

SCI EXITDEF Types 20

Sample CQS User Exit List PROCLIB Member . . 20

Sample OM User Exit List PROCLIB Member . . 21

Sample RM User Exit List PROCLIB Member . . 21

Sample SCI User Exit List PROCLIB Member . . 22

Sample BPE User Exit List PROCLIB Member . . 22

Sample Combined User Exit List PROCLIB

Member 23

Chapter 3. BPE Commands 25

BPE Command Syntax and Invocation 25

BPE Command Invocation 26

BPE Wildcard Character Support 26

Specifying IMS Component Command

Parameters 26

BPE TRACETABLE Commands 27

Format of BPE DISPLAY TRACETABLE

Command 27

Usage of BPE DISPLAY TRACETABLE

Command 28

BPE DISPLAY TRACETABLE Command Output 30

Command Example 1 31

Command Example 2 31

Command Example 3 31

Command Example 4 31

Command Example 5 32

Format of BPE UPDATE TRACETABLE

Command 32

Usage of BPE UPDATE TRACETABLE Command 32

BPE UPDATE TRACETABLE Command Output 35

Command Example 1 35

Command Example 2 35

BPE DISPLAY VERSION Command 35

Format of BPE DISPLAY VERSION Command . 36

Usage of BPE DISPLAY VERSION Command . . 36

DISPLAY VERSION Command Output 36

Command Example 1 36

Command Example 2 36

BPE USEREXIT Commands 36

Format of BPE DISPLAY USEREXIT Command 37

Usage of BPE DISPLAY USEREXIT Command . . 37

BPE DISPLAY USEREXIT Command Output . . 40

Command Example 1 41

Command Example 2 41

Command Example 3 41

Command Example 4 42

Command Example 5 42

Format of BPE REFRESH USEREXIT Command 42

Usage of BPE REFRESH USEREXIT Command 42

Refreshing User Exits in BPE 44

Considerations for Refreshing User Exits . . 45

BPE REFRESH USEREXIT Command Output . . 45

Command Example 1 45

Command Example 2 46

Chapter 4. BPE User-Supplied Exit

Routines 47

General BPE User-Supplied Exit Routine

Information 47

BPE Initialization-Termination User-Supplied Exit

Routine 47

© Copyright IBM Corp. 2002, 2006 iii

||
||
||
||

||

||

 | |

Contents of Registers on Entry 48

Contents of Registers on Exit 48

BPE Initialization and Termination Parameter List 48

BPE Statistics User-Supplied Exit Routine 49

Contents of Registers on Entry 49

Contents of Registers on Exit 49

BPE Statistics Exit Routine Parameter List . . . 49

BPE System Statistics Area 50

Chapter 5. BPE User-Supplied Exit

Routine Interfaces and Services 61

General BPE User-Supplied Exit Routine Interface

Information 61

Standard BPE User Exit Parameter List 61

Work Areas Provided by BPE 63

The Static Work Area 63

The Dynamic Work Area 64

Calling Subsequent Exit Routines in BPE . . . 64

BPE User-Supplied Exit Routine Environment . . 65

BPE User Exit Routine Performance

Considerations 65

Abends in BPE User-Supplied Exit Routines . . 66

BPE User-Supplied Exit Routine Callable Services . 66

BPEUXCSV Macro Description 66

BPEUXCSV Environmental Requirements . . 67

BPEUXCSV Restrictions and Limitations . . . 68

BPEUXCSV Register Information 68

BPEUXCSV Performance Implications . . . 68

Other Macro Requirements 68

BPEUXCSV Macro Syntax 68

Return from BPEUXCSV 71

BPEUXCSV Get Storage Service 71

BPEUXCSV Free Storage Service 73

BPEUXCSV Load Module Service 74

BPEUXCSV Delete Module Service 76

BPEUXCSV Create Named Storage Service . . 77

BPEUXCSV Retrieve Named Storage Service 78

BPEUXCSV Destroy Named Storage Service 79

BPE Callable Service Example: Sharing Data

Among Exit Routines 80

Sample Initialization Exit Routine 81

Sample Processing Exit Routine 82

Sample Termination Exit Routine 83

Notices 85

Programming Interface Information 87

Trademarks 87

Bibliography 89

IMS Version 9 Library 89

Supplementary Publications 89

Publication Collections 90

Accessibility Titles Cited in This Library 90

Index 91

iv Base Primitive Environment Guide and Reference

Figures

 1. BPE and IMS Components 2

 2. Example of a Configuration File for BPE with

OM, RM, SCI, and CQS 16

 3. Example of a CQS User Exit Routine List

PROCLIB Member 20

 4. Example of an OM User Exit Routine List

PROCLIB Member 21

 5. Example of an RM User Exit Routine List

PROCLIB Member 22

 6. Example of an SCI User Exit Routine List

PROCLIB Member 22

 7. Example of a BPE User Exit Routine List

PROCLIB Member 23

 8. Example of a Combined Exit Routine List

PROCLIB Member 24

 9. BPE System Statistics Area Structure 51

10. Locating the Dispatcher Statistics Area . . . 53

11. Syntax for BPEUXCSV Macro CALL Function 68

12. Syntax for BPEUXCSV Macro DSECT Function 68

13. Sample Initialization Exit Routine 82

14. Sample Processing Exit Routine 83

15. Sample Termination Exit Routine 84

© Copyright IBM Corp. 2002, 2006 v

||

vi Base Primitive Environment Guide and Reference

Tables

 1. Licensed Program Full Names and Short

Names ix

 2. Valid Values for OWNER Parameter 27

 3. BPE Init-Term User-Supplied Exit Routine

Parameter List: BPE Initialization 48

 4. BPE Statistics User-Supplied Exit Routine

Parameter List 50

 5. BPE System Statistics Area 52

 6. BPE Statistics Offset Table 54

 7. BPE Dispatcher Statistics Area 54

 8. BPE TCB Statistics Table Entry 55

 9. BPE Control Block Services Statistics Area 56

10. BPE Control Block Statistics Table Entry 57

11. BPE AWE Services Statistics Area 57

12. BPE AWE Services Statistics Table Entry 58

13. BPE Storage Services Statistics Area 59

14. Standard BPE User Exit Parameter List 62

15. FUNC=CALL Return Codes 71

16. Get Storage Service Return Codes 73

17. Free Storage Service Return Codes 74

18. Load Module Service Return Codes 75

19. Delete Module Service Return Codes 77

20. Create Named Storage Service Return Codes 78

21. Retrieve Named Storage Service Return Codes 79

22. Destroy Named Storage Service Return Codes 80

© Copyright IBM Corp. 2002, 2006 vii

viii Base Primitive Environment Guide and Reference

About This Book

This information is available as part of the Information Management Software for

z/OS® Solutions Information Center. To view this information within the

Information Management Software for z/OS Solutions Information Center, go to

http://publib.boulder.ibm.com/infocenter/imzic. This information is also available

in PDF and BookManager formats. To get the most current versions of the PDF

and BookManager formats, go to the IMS Library page at www.ibm.com/
software/data/ims/library.html.

This book is designed to help programmers, operators, and system support

personnel use the IMS Base Primitive Environment (BPE) external interfaces. BPE

is a common system service base upon which Common Queue Service (CQS) and

the Common Service Layer (CSL) components Operations Manager (OM), Resource

Manager (RM), and the Structured Call Interface (SCI) are built.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655–K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

Terminology and Related Publications

For a list of related publications, refer to “Bibliography” on page 89.

For definitions of terminology used in this manual and references to related

information in other manuals, see the IMS™ Version 9: Master Index and Glossary.

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM® Application Recovery Tool for IMS and

DB2®

Application Recovery Tool

IBM CICS® Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

IBM Enterprise COBOL for z/OS and

OS/390

Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM

& VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

© Copyright IBM Corp. 2002, 2006 ix

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for

z/OS

IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java™ IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for

z/OS

IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change

Accumulation Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM z/OS Language Environment Language Environment

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for

z/OS and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application

Developer Integration Edition

WebSphere Studio

IBM z/OS z/OS

IBM z/OS C/C++ C/C++

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next

line.

x Base Primitive Environment Guide and Reference

– The >--- symbol indicates that a syntax diagram is continued from the

previous line.

– The --->< symbol indicates the end of a syntax diagram.
v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the syntax element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

About This Book xi

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is

shown separately from the main syntax diagram, but the contents of the

fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

 required_item

optional_item

v In IMS, a b symbol indicates one blank position.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic

letters (for example, column-name). They represent user-supplied names or

values.

v Separate keywords and parameters by at least one space if no intervening

punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,

exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Click the Feedback link located at the bottom of every page in the Information

Management Software for z/OS Solutions Information Center. The information

center can be found at http://publib.boulder.ibm.com/infocenter/imzic.

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html

and click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

xii Base Primitive Environment Guide and Reference

Summary of Changes

Changes to the Current Edition of This Book for Version 9

This edition, which is available in softcopy format only, includes technical and

editorial changes.

The following information has changed significantly:

v Chapter 2, “BPE Definition and Tailoring,” on page 5 includes new information

on IMS Connect.

Changes to This Book for IMS Version 9

This book contains new technical information for IMS Version 9, as well as

editorial changes.

In this edition, new information on IMS Connect, specifically IMS Connect Trace

Table types, has been added to “IMS Connect Trace Table Types” on page 11.

For detailed information about technical enhancements for IMS Version 9, see the

IMS Version 9 Release Planning Guide.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the Information Management

Software for z/OS Solutions Information Center, which is available at

http://publib.boulder.ibm.com/infocenter/imzic. The Information Management

Software for z/OS Solutions Information Center provides a graphical user interface

for centralized access to the product information for IMS, IMS Tools, DB2

Universal Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management

Facility (QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

Information Management Software for z/OS Solutions Information Center, and

in PDF and BookManager® formats.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is available in

softcopy format only, as part of the Information Management Software for z/OS

Solutions Information Center, and in PDF and BookManager formats.

© Copyright IBM Corp. 2002, 2006 xiii

v To complement the IMS Version 9 library, a retail book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available from IBM Press. Go to the IMS Web site at

www.ibm.com/ims for details.

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: Customization Guide

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

A new appendix has been added to the IMS Version 9: Customization Guide that

describes the contents of the ADFSSMPL (also known as SDFSSMPL) data set.

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Accessibility features for IMS

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IMS. These features

support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

Note: The Information Management Software for z/OS Solutions Information

Center, which is available at http://publib.boulder.ibm.com/infocenter/
imzic, and its related publications are accessibility-enabled. You can operate

all features using the keyboard instead of the mouse.

Keyboard navigation

You can access the information center and IMS ISPF panel functions by using a

keyboard or keyboard shortcut keys.

xiv Base Primitive Environment Guide and Reference

|
|

|

|
|

|
|
|

|

|

|
|
|
|

|
|
|

You can find information about navigating the information center using a keyboard

in the information center home at publib.boulder.ibm.com/infocenter/imzic.

For information about navigating the IMS ISPF panels using TSO/E or ISPF, refer

to the z/OS V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the

z/OS V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate

each interface, including the use of keyboard shortcuts or function keys (PF keys).

Each guide includes the default settings for the PF keys and explains how to

modify their functions.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more

information about the commitment that IBM has to accessibility.

Summary of Changes xv

|
|

|
|
|
|
|
|

|
|
|

xvi Base Primitive Environment Guide and Reference

Chapter 1. Introduction to Base Primitive Environment

The IMS Base Primitive Environment (BPE) is a common system service base upon

which many other IMS components are built. BPE provides services such as

tracing, message formatting, parsing, storage management, sub-dispatching, and

serialization. In IMS Version 9, the following components use BPE:

v Common Queue Server (CQS)

v IMS Connect

v Operations Manager (OM)

v Resource Manager (RM)

v Structured Call Interface (SCI)

When an IMS component that uses BPE is started, the component loads a copy of

the BPE service modules into its address space from the IMS Version 9 program

libraries. The IMS component’s modules are specific to that component; however,

the BPE service modules are common across the various address spaces. The base

system service functions are therefore identical in every address space that uses

BPE. Figure 1 on page 2 shows the relationship of BPE, IMS components, and IMS

program libraries.

© Copyright IBM Corp. 2002, 2006 1

|

Most of the time, BPE is a hidden layer in an IMS component address space.

However, you can use the following external interfaces to BPE:

Configuration

You can configure certain attributes about an address space that uses BPE

at startup by using statements in BPE PROCLIB members. For example,

you can set the default level and size for BPE-managed trace tables.

Commands

You can use the small set of commands that BPE provides to operate on

BPE-managed resources. For example, you can display and change

attributes of BPE-managed user exit routines and trace tables.

User exit routines

You can customize the operation of an IMS component address space by

writing user exit routines. Components running with BPE can use the BPE

user exit routine service to call component-specific user-supplied exit

routines. BPE also has user exit routines of its own. User exit routines that

are called through BPE receive control with a standard BPE user exit

routine interface and are allowed to use BPE user exit routine callable

services.

Messages and Abends

BPE has its own messages and abend codes. The IMS Version 9: Messages

Figure 1. BPE and IMS Components

2 Base Primitive Environment Guide and Reference

|

|
|
|

|
|
|

|
|
|
|
|
|
|

and Codes, Volume 1 and IMS Version 9: Messages and Codes, Volume 2

manuals document all BPE messages and abend codes.

This manual describes how to use these BPE external interfaces: configuration,

commands, and user exit routines.

Chapter 1. Introduction to Base Primitive Environment 3

4 Base Primitive Environment Guide and Reference

Chapter 2. BPE Definition and Tailoring

This chapter describes the tasks of defining and tailoring BPE settings for an IMS

component using BPE.

The following topics provide additional information:

v “General BPE PROCLIB Member Information”

v “BPE Configuration Parameter PROCLIB Member”

v “BPE Exit List PROCLIB Member” on page 17

This chapter contains Product-sensitive Programming Interface information.

General BPE PROCLIB Member Information

You can specify the settings of several BPE runtime parameters through the use of

BPE PROCLIB members. For example, you can set the level of BPE and IMS

component trace tables, and you can associate user exit routines with an IMS

component user exit routine type. The following rules apply to the format of all

BPE PROCLIB members:

v The PROCLIB data set should have an LRECL of at least nine (80 is typical) and

a fixed record format.

v The rightmost eight columns of each record are ignored, and you can use them

for sequence numbers or any other notation. In the remaining columns, you

code the keyword parameters. For example, if your record size is 80, you use

columns 1 through 72 for your configuration data. You can use columns 73

through 80 for sequence numbers.

v Keywords can contain leading and trailing blanks.

v You can specify multiple keywords in each record.

v Use commas or spaces to delimit keywords.

v Use an asterisk (*) or pound sign (#) in column one to begin a comment. You

can also include a comment anywhere within a statement by enclosing it

between a slash-asterisk and an asterisk-slash pair. Comments between

slash-asterisk and asterisk-slashes may span multiple lines.

Example:

/*This is an example of a comment within a statement*/

v Statements may be continued across multiple lines by breaking the statement at

a word boundary and continuing the statement on the next line.

Example:

TRCLEV=(AWE,

HIGH,BPE)

v Values coded in this PROCLIB member are case-sensitive. Use uppercase

characters for all PROCLIB members.

BPE Configuration Parameter PROCLIB Member

You can use the BPE configuration parameter PROCLIB member to define BPE

execution environment settings for the address space being started. Specify the

PROCLIB member name by coding BPECFG=member_name on the EXEC PARM=

statement in the address space startup JCL, as shown in this example:

© Copyright IBM Corp. 2002, 2006 5

|

|

|

|

|
|

|
|

EXEC CQSINIT0,PARM=’BPECFG=BPECFGCQ’

You can use the BPE configuration parameter PROCLIB member to specify the

following items:

v The language used for BPE and IMS component messages

v The trace level settings for BPE and IMS component internal trace tables

v The name of a BPE exit list PROCLIB member where configuration information

for IMS component user exit routines is stored

v The time interval between calls to the BPE statistics exit routines

These are the keywords that are available for the BPE configuration parameter

PROCLIB member:

v LANG=

v TRCLEV=

v EXITMBR=

v STATINTV=

Recommendation: Avoid coding statements in the BPE configuration member that

specify definitions for the same resources multiple times. For example, avoid

multiple TRCLEV statements for the same trace table type, or multiple EXITMBR

statements for the same IMS component type. BPE uses the last statement it

encounters in the member. Any values that are specified on earlier duplicate

statements are ignored. A message, BPE0017I is issued for each duplicate statement

found.

BPECFG= LANG Parameter

�� LANG=ENU ��

The LANG parameter specifies the language used for BPE and IMS component

messages. ENU is for US English, which is currently the only supported language.

BPECFG= TRCLEV Parameter

�� TRCLEV= (type,level,ims_component)

,PAGES=num_pages
 ��

The TRCLEV parameter specifies the trace level for a trace table and, optionally,

the number of storage pages allocated for the trace table. TRCLEV= controls the level

of tracing (the amount of detail traced) for each specified trace table type.

BPE-managed trace tables are areas in storage where BPE, and the IMS component

that uses BPE, can trace diagnostic information about events occurring within the

address space.

BPE-managed trace tables are internal in-core tables only. Trace records are not

written to any external data sets. Some trace table types are defined and owned by

BPE itself. These are known as system trace tables, and are present in all IMS

component address spaces that use BPE. The IMS component can also define its

own trace tables. These are known as component trace tables or user-product trace

BPE Configuration Parameter PROCLIB Member

6 Base Primitive Environment Guide and Reference

|

tables, and are only present in address spaces of the defining IMS component. For

example, trace table types defined by Common Queue Server (CQS) are only

present in a CQS address space.

You can share one BPE configuration parameter PROCLIB member among several

different IMS component address spaces. Any TRCLEV statements you code for

system trace tables apply identically to all of the address spaces that share the

PROCLIB member. TRCLEV statements for a particular IMS component trace table

are processed only by address spaces running that component. For example, you

could have a BPE configuration parameter PROCLIB member containing TRCLEV

statements for BPE, CQS, and Resource Manager (RM) trace table types. When you

start a CQS address space, only the BPE and CQS TRCLEV statements are

processed. When you start an RM address space, only the BPE and TRCLEV

statements are processed.

type

Specifies the type of trace table. Each trace table has a four-character type. A

trace table’s type refers to the kind of events that are traced into that table. For

example, the BPE DISP trace table contains entries related to events in the BPE

dispatcher. Refer to the type tables in “BPE Trace Table Types” on page 8 for a

list of valid types for each different IMS component address space.

level

Controls how much tracing is done in the specified trace table. Each trace entry

that is made has a level associated with the entry. Each trace table has a level

setting controlled by the value for level that you specify on the TRCLEV

statement for the table.

 A trace entry is written only if the trace entry’s level is less than or equal to

the table’s level setting. For example, if the trace entry level is MEDIUM, the

trace entry is added to the trace table only if the table’s level is MEDIUM or

HIGH. Thus, the level you specify controls the volume (number) of trace

entries that are written to a given table.

 A low setting of the level parameter results in fewer trace entries being made

to the table. The trace table does not wrap as quickly as with a higher setting

(which means that diagnostic information remains available for a longer period

of time), and the performance impact is minimized. However, the trace

information is not as detailed as with higher settings, so the captured

information might not be sufficient to solve a problem.

 A high setting of the level parameter results in more trace entries being written

to the table. This can provide additional diagnostic information for solving a

problem; however, the trace table tends to wrap more frequently, and higher

settings can cause additional CPU usage.

 Choose one of the following for the level parameter:

NONE

No tracing.

 Recommendation: Do not specify NONE because no tracing, not even

tracing for error conditions, is done for the specified table.

ERROR

Only trace entries for error conditions are made. ERROR is the default.

LOW

Low-volume tracing (key component events). This is the minimum

recommended trace level setting for normal operation.

BPE Configuration Parameter PROCLIB Member

Chapter 2. BPE Definition and Tailoring 7

|

MEDIUM

Medium-volume tracing (most component events).

HIGH

High-volume tracing (all component events).

ims_component

Specifies the IMS component that defines the trace table type. Possible values

are:

BPE

Indicates that the table is a BPE-defined (system) trace table. BPE trace

tables exist in all IMS component address spaces that run with BPE.

CQS

Indicates that the table is a Common Queue Server-defined trace table

type.

HWS

Indicates that the table is an IMS Connect-defined trace table type.

OM

Indicates that the table is an Operations Manager-defined trace table type.

RM

Indicates that the table is a Resource Manager-defined trace table type.

SCI

Indicates that the table is a Structured Call Interface-defined trace table

type.

PAGES=num_pages

An optional parameter that can be used to specify the number of 4 KB pages

to be allocated for the table type.

 Specify a value from 1 to 32767 pages for this parameter. If BPE is unable to

get the amount of storage you requested for a trace table, it will try to get a

smaller number of pages to enable some tracing to be done. You can see the

actual number of pages BPE obtained for each trace by issuing the DISPLAY

TRACETABLE command.

 Related Reading: For more information about the DISPLAY TRACETABLE

command, see “BPE TRACETABLE Commands” on page 27.

 If you do not use this parameter, then the trace table has the default number of

pages, as specified under the description of each trace table type.

 The trace table types that are provided by the various IMS components are

described in:

v “BPE Trace Table Types”

v “CQS Trace Table Types” on page 10

v “IMS Connect Trace Table Types” on page 11

v “OM Trace Table Types” on page 12

v “RM Trace Table Types” on page 13

v “SCI Trace Table Types” on page 13

BPE Trace Table Types

BPE provides a set of trace table types for tracing processing within BPE functions.

These BPE trace table types are present in all IMS component address spaces.

TRCLEV statements specifying a component of BPE are processed for all IMS

component address space types.

BPE Configuration Parameter PROCLIB Member

8 Base Primitive Environment Guide and Reference

|
|

|

|

*

 Specifying* enables you to set the default trace level (and, optionally, the

default number of pages per trace table) for all BPE-defined trace table types.

If you use the * type, make sure it is the first TRCLEV statement for

BPE-defined trace table types in your PROCLIB member. You can then code

additional TRCLEV statements for specific BPE types to selectively override the

defaults.

 Recommendation: Code a TRCLEV statement with a type of * for BPE traces,

specifying a level of at least LOW as your first TRCLEV statement for

BPE-defined trace table types. Using this coding ensures that at least some

tracing is done for all BPE trace tables. Specifying a TRCLEV of * also ensures

that any new trace table types that are activated in the future are turned on in

your system, even if you have not modified your BPE configuration parameter

PROCLIB member to explicitly add a TRCLEV statement.

AWE

 The asynchronous work element (AWE) services trace table shows details of

AWE server creation and deletion and AWE processing requests.

 The default number of pages for this table is 6.

CBS

 The control block services trace table traces requests for control block storage.

 The default number of pages for this table is 6.

CMD

 The command trace table traces the first 48 characters of each command

processed by BPE.

 The default number of pages for this table is 2.

DISP

 The dispatcher trace table traces BPE dispatcher activity.

 The default number of pages for this table is 8.

ERR

 The error trace table traces error events within a BPE address space.

 The default number of pages for this table is 2.

 Restriction: You cannot set the level for the ERR trace table. BPE forces the

level to HIGH to ensure that error diagnostics are captured. Any level that you

specify for the ERR trace table is ignored. You can, however, specify the

number of pages for the ERR trace table on the TRCLEV statement.

HASH

 The hash trace table traces events related to BPE hash table services. Currently,

only OM, RM, and SCI address spaces request hash table services. For address

spaces that do not use the BPE hash table services, this TRCLEV statement is

ignored.

 The default number of pages for this table is 8.

LATC

 The latch trace table traces BPE latch management (serialization) activity. The

default number of pages for this table is 8.

BPE Configuration Parameter PROCLIB Member

Chapter 2. BPE Definition and Tailoring 9

SSRV

 The system services trace table traces general BPE system service calls.

 The default number of pages for this table is 4.

STG

 The storage service trace table traces storage service requests.

 The default number of pages for this table is 8.

USRX

 The user exit routine trace table traces activity related to exit routines (for

example, loads, calls, or abends).

 The default number of pages for this table is 4.

CQS Trace Table Types

CQS provides a set of trace table types for tracing processing within the CQS

address space. These CQS trace table types are present only in a CQS address

space. TRCLEV statements specifying a component of CQS is ignored for any other

address space type.

*

 Specifying a * enables you to set the default trace level (and, optionally, the

default number of pages per trace table) for all CQS-defined trace table types.

If you use the * type, make sure it is the first TRCLEV statement for

CQS-defined trace table types in your PROCLIB member. You can then code

additional TRCLEV statements for specific CQS types to selectively override

the defaults.

 Recommendation: Code a TRCLEV statement with a type of * for CQS traces,

specifying a level of at least LOW as your first TRCLEV statement for

CQS-defined trace table types. Using this coding ensures that at least some

tracing is done for all CQS trace tables. It also ensures that any new trace table

types that are added in the future are turned on in your system, even if you

have not modified your BPE configuration parameter PROCLIB member to

explicitly add a TRCLEV statement.

CQS

 The CQS trace table traces general activity that is not related to a specific

structure.

 The default number of pages for this table is 4.

ERR

 The error trace table traces error events within a CQS address space.

 The default number of pages for this table is 4.

 Restriction: You cannot set the level for the ERR trace table. BPE forces the

level to HIGH to ensure that error diagnostics are captured. Any level that you

specify for the ERR trace table is ignored. You can, however, specify the

number of pages for the ERR trace table on the TRCLEV statement.

INTF

 The interface trace table traces activity in the interface between a CQS and its

client.

 The default number of pages for this table is 8.

BPE Configuration Parameter PROCLIB Member

10 Base Primitive Environment Guide and Reference

STR

 The structure trace table traces activity related to a structure. CQS defines one

STR trace table for each structure pair defined to CQS.

 The default number of pages for this table is 8.

IMS Connect Trace Table Types

IMS Connect defines its own trace tables using a set of trace table types for tracing

processing within IMS Connect functions. These tables are known as component

trace tables or user-product trace tables. You can code the following values for IMS

Connect-defined trace tables:

* Specifying a * enables you to set the default trace level (and optionally, the

default number of pages per trace table) for all IMS Connect-defined trace

table types. If you use the * type, make sure it is the first TRCLEV statement

for IMS Connect-defined trace table types in your PROCLIB member. You can

then code additional TRCLEV statements for specific IMS Connect types to

selectively override the defaults.

 Recommendation: Code a TRCLEV statement with a type of * for IMS Connect

traces, specifying a level of at least LOW as your first TRCLEV statement for

IMS Connect-defined trace table types. Using this coding ensures that at least

some tracing is done for all IMS Connect trace tables. It also ensures that any

new trace table types that are added in the future will be turned on in your

system, even if you have not modified your IMS Connect BPE configuration

parameter PROCLIB member to explicitly add a TRCLEV statement.

CMDT

The command trace table traces IMS Connect command activity. The default

number of pages for this table is 2.

ENVT

The interface trace table traces activity in the interface between an IMS

Connect and its client. The default number of pages for this table is 2.

HWSI

The IMS Connect to OTMA driver trace table traces communication activity

between IMS Connect and OTMA drivers. The default number of pages for

this table is 2.

HWSN

The IMS Connect to local option driver trace table traces communication

activity and event between local option driver and IMS Connect. The default

number of pages for this table is 2.

HWSO

The IMSplex driver (IPDC) trace table traces communication activity and

events between the IMSplex driver and IMS Connect. The default number of

pages for this table is 2.

HWSW

The IMS Connect to TCP/IP driver trace table traces communication activity

and events between TCP/IP drivers and IMS Connect. The default number of

pages for this table is 2.

OMDR

The IMSplex driver (IPDC) trace table traces communication protocol activity

(SCI calls). The default number of pages for this table is 2.

BPE Configuration Parameter PROCLIB Member

Chapter 2. BPE Definition and Tailoring 11

|
|
|
|
|

||
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

OTMA

The OTMA communication driver trace table traces internal communication

protocol activity (XCF calls). The default number of pages for this table is 2.

PCDR

The local option driver trace table traces local option communication protocol

activity. The default number of pages for this table is 2.

TCPI

The TCP/IP communication driver trace table traces communication protocol

activity (TCP/IP calls). The default number of pages for this table is 2.

OM Trace Table Types

OM provides a set of trace table types for tracing processing within the OM

address space. These OM trace table types are present only in an OM address

space. TRCLEV statements specifying a component of OM are ignored for any

other address space type.

*

 Specifying a * enables you to set the default trace level (and, optionally, the

default number of pages per trace table) for all OM-defined trace table types. If

you use the * type, make sure it is the first TRCLEV statement for OM-defined

trace table types in your PROCLIB member. You can then code additional

TRCLEV statements for specific OM types to selectively override the defaults.

 Recommendation: Code a TRCLEV statement with a type of * for OM traces,

specifying a level of at least LOW as your first TRCLEV statement for

OM-defined trace table types. Using this coding ensures that at least some

tracing is done for all OM trace tables. It also ensures that any new trace table

types that are added in the future are turned on in your system, even if you

have not modified your BPE configuration parameter PROCLIB member to

explicitly add a TRCLEV statement.

CSL

 The Common Service Layer (CSL) trace table is used for routines that are

common to all common service layer managers.

 The default number of pages for this table is 4.

ERR

 The error trace table traces error events within an OM address space.

 The default number of pages for this table is 4.

 Restriction: You cannot set the level for the ERR trace table. BPE forces the

level to HIGH to ensure that error diagnostics are captured. Any level that you

specify for the ERR trace table is ignored. You can, however, specify the

number of pages for the ERR trace table on the TRCLEV statement.

OM

 The Operations Manager (OM) trace table traces events related to general OM

processes.

 The default number of pages for this table is 4.

PLEX

 The IMSplex trace table traces OM processing for a specific IMSplex.

 The default number of pages for this table is 8.

BPE Configuration Parameter PROCLIB Member

12 Base Primitive Environment Guide and Reference

|
|
|

|
|
|

|
|
|

RM Trace Table Types

RM provides a set of trace table types for tracing processing within the RM

address space. These RM trace table types are present only in a RM address space.

TRCLEV statements specifying a component of RM are ignored for any other

address space type.

*

 Specifying a * enables you to set the default trace level (and, optionally, the

default number of pages per trace table) for all RM-defined trace table types. If

you use the * type, make sure it is the first TRCLEV statement for RM-defined

trace table types in your PROCLIB member. You can then code additional

TRCLEV statements for specific RM types to selectively override the defaults.

 Recommendation: Code a TRCLEV statement with a type of * for RM traces,

specifying a level of at least LOW as your first TRCLEV statement for

RM-defined trace table types. Using this coding ensures that at least some

tracing is done for all RM trace tables. It also ensures that any new trace table

types that are added in the future are turned on in your system, even if you

have not modified your BPE configuration parameter PROCLIB member to

explicitly add a TRCLEV statement.

CSL

 The Common Service Layer (CSL) trace table is used for routines that are

common to all common service layer managers.

 The default number of pages for this table is 4.

ERR

 The error trace table traces error events within an RM address space.

 The default number of pages for this table is 4.

 Restriction: You cannot set the level for the ERR trace table. BPE forces the

level to HIGH to ensure that error diagnostics are captured. Any level that you

specify for the ERR trace table is ignored. You can, however, specify the

number of pages for the ERR trace table on the TRCLEV statement.

RM

 The Resource Manager (RM) trace table traces events related to general RM

processes.

 The default number of pages for this table is 4.

PLEX

 The IMSplex trace table traces RM processing for a specific IMSplex.

 The default number of pages for this table is 8.

SCI Trace Table Types

SCI provides a set of trace table types for tracing processing within the SCI address

space. These SCI trace table types are present only in a SCI address space. TRCLEV

statements specifying a component of SCI are ignored for any other address space

type.

*

 Specifying a * enables you to set the default trace level (and, optionally, the

default number of pages per trace table) for all SCI-defined trace table types. If

you use the * type, make sure it is the first TRCLEV statement for SCI-defined

BPE Configuration Parameter PROCLIB Member

Chapter 2. BPE Definition and Tailoring 13

|
|
|
|
|

|
|
|
|
|
|
|

trace table types in your PROCLIB member. You can then code additional

TRCLEV statements for specific SCI types to selectively override the defaults.

 Recommendation: Code a TRCLEV statement with a type of * for SCI traces,

specifying a level of at least LOW as your first TRCLEV statement for

SCI-defined trace table types. Using this coding ensures that at least some

tracing is done for all SCI trace tables. It also ensures that any new trace table

types that are added in the future are turned on in your system, even if you

have not modified your BPE configuration parameter PROCLIB member to

explicitly add a TRCLEV statement.

CSL

 The Common Service Layer (CSL) trace table is used for routines that are

common to all common service layer address spaces.

 The default number of pages for this table is 8.

ERPL

 The error parameter list trace table traces a copy of the interface parameter list

when an error occurs processing an SCI request or message.

 The default number of pages for this table is 8.

ERR

 The error trace table traces error events within an SCI address space.

 The default number of pages for this table is 4.

 Restriction: You cannot set the level for the ERR trace table. BPE forces the

level to HIGH to ensure that error diagnostics are captured. Any level that you

specify for the ERR trace table is ignored. You can, however, specify the

number of pages for the ERR trace table on the TRCLEV statement.

INTF

 The interface trace table traces IMSplex member interface activity (requests and

messages).

 The default number of pages for this table is 8.

INTP

 The interface parameter trace table traces a copy of the interface parameter list

during SCI request and message processing.

 The default number of pages for this table is 16.

PLEX

 The IMSplex trace table traces SCI processing for a specific IMSplex.

 The default number of pages for this table is 8.

SCI

 The Structured Call Interface (SCI) trace table traces events related to general

SCI processes.

 The default number of pages for this table is 8.

BPECFG= EXITMBR Parameter

�� EXITMBR=(member_name,ims_component) ��

BPE Configuration Parameter PROCLIB Member

14 Base Primitive Environment Guide and Reference

|
|

|

|

The EXITMBR parameter specifies the exit list PROCLIB member name. You can

specify one EXITMBR= parameter for each IMS component running with BPE, and

one EXITMBR= parameter for BPE itself.

Related Reading: For more information about the BPE exit list PROCLIB member,

see “BPE Exit List PROCLIB Member” on page 17.

member_name

Specifies the eight character exit list PROCLIB member name.

ims_component

Specifies the IMS component whose user exit routines are being defined.

Possible values are:

BPE

Indicates the BPE exit routine PROCLIB member name.

CQS

Indicates the Common Queue Server exit routine PROCLIB member name.

HWS

Indicates the IMS Connect exit routine PROCLIB member name.

OM

Indicates the Operations Manager (OM) exit routine PROCLIB member

name.

RM

Indicates the Resource Manager (RM) exit routine PROCLIB member name.

SCI

Indicates the Structured Call Interface (SCI) exit routine PROCLIB member

name.

BPECFG= STATINTV Parameter

�� STATINTV=(number_of_seconds) ��

The optional STATINTV parameter specifies the time interval, in seconds, between

calls to the BPE statistics exit or exit routines. You can set STATINTV from 1 to

2147483647 (231-1). The default STATINTV value is 600 (ten minutes).

Recommendation: Specify a STATINTV value of 60 or more to avoid possible

performance problems due to frequent exit routine calls.

Sample BPE Configuration File

A sample BPE configuration data set is shown in Figure 2 on page 16. This

example shows a BPE configuration data set that can be shared by CQS and CSL

address spaces. It contains definitions for traces for:

v BPE system

v CQS

v OM

v RM

v SCI

It also contains user exit routine list PROCLIB member specifications.

BPE Configuration Parameter PROCLIB Member

Chapter 2. BPE Definition and Tailoring 15

|
|

|
|
|
|
|

**

* CONFIGURATION FILE FOR BPE WITH CSL and CQS ADDRESS SPACES *

**

LANG=ENU /* Language for messages */

 /* (ENU = U.S. English) */

STATINTV=420 /* STATS user exit interval */

 /* = 420 seconds (7 minutes) */

Definitions for BPE system traces

TRCLEV=(*,LOW,BPE) /* Set default for all BPE */

 /* traces to LOW. */

TRCLEV=(AWE,HIGH,BPE) /* AWE server trace on high */

TRCLEV=(CBS,MEDIUM,BPE) /* Ctrl blk serv trc on medium */

TRCLEV=(DISP,HIGH,BPE,PAGES=12) /* Dispatcher trace on high */

 /* with 12 pages */

Definitions for CQS traces

TRCLEV=(*,MEDIUM,CQS) /* Set default for all CQS */

 /* traces to medium. */

TRCLEV=(STR,HIGH,CQS) /* But run STR trace on high */

Definitions for OM traces

TRCLEV=(*,MEDIUM,OM) /* Set default for all OM */

 /* traces to medium */

Definitions for RM traces

TRCLEV=(*,MEDIUM,RM) /* Set default for all RM */

 /* traces to medium */

Definitions for SCI traces

TRCLEV=(*,MEDIUM,SCI) /* Set default for all SCI */

 /* traces to medium */

TRCLEV=(INTF,HIGH,SCI) /* Intf call trace on high */

TRCLEV=(INTP,HIGH,SCI) /* Intf parmlist trace on high */

User exit list PROCLIB member specifications

EXITMBR=(BPEEXIT0,BPE) /* BPE user exit definitions */

EXITMBR=(CQSEXIT0,CQS) /* CQS user exit definitions */

EXITMBR=(OMEXIT00,OM) /* OM user exit definitions */

EXITMBR=(RMEXIT00,RM) /* RM user exit definitions */

EXITMBR=(SCIEXIT0,SCI) /* SCI user exit definitions */

Figure 2. Example of a Configuration File for BPE with OM, RM, SCI, and CQS

BPE Configuration Parameter PROCLIB Member

16 Base Primitive Environment Guide and Reference

BPE Exit List PROCLIB Member

Use the PROCLIB members specified by the EXITMBR= parameter in the BPE

configuration parameter PROCLIB member to define user exit routines to BPE. BPE

Exit List PROCLIB members are IMS-component specific. You specify one

EXITMBR statement for each IMS component that provides user exit routines

through BPE services. Each EXITMBR statement specifies the name of a PROCLIB

member that contains the definitions for exit routines for that IMS component. You

can have a separate exit list PROCLIB member for each IMS component, or you

can share one exit list PROCLIB member among several IMS components.

A BPE exit list PROCLIB member associates a user exit routine type with a list of

one or more user exit routines. Use the EXITDEF statement to define the exit

routine modules to be called for a particular exit routine type. The BPE exit list

PROCLIB member is processed by BPE during address space initialization. It is

also processed when you enter a REFRESH USEREXIT command (see “BPE USEREXIT

Commands” on page 36 for more information about BPE USEREXIT commands).

Recommendation: Avoid coding statements in the BPE exit routine list member

that specify definitions for the same exit routine type multiple times. BPE always

uses the last statement it encounters in the member for a particular exit routine.

Any earlier statements for the same exit routine are ignored. Message BPE0017I is

issued for each duplicate statement found.

If you code the same user exit routine name more than once in the exit routine list

(EXIT=) of any single EXITDEF= statement, BPE always uses the first occurrence of

the exit routine module name to determine the order for calling the exit routines.

Duplicate names are ignored, and a message, BPE0018I is issued for each duplicate

name.

BPE EXITMBR= EXITDEF Parameter

��

�

 ,

EXITDEF=

(TYPE=type,EXITS=(

exitname

)

)

,ABLIM=limit

,COMP=ims_component

��

The EXITDEF statement associates an exit routine type with a list of one or more

exit routine modules to be called. The modules are called in the order listed. The

EXITDEF statement consists of a sublist (enclosed in parentheses) containing the

keywords TYPE, EXITS, ABLIM, and COMP.

TYPE=type

Specifies the type of exit routine. The IMS component defines the types of exit

routines that are supported.

EXITS=(exitname,...)

Specifies a list of one or more exit routine module names. The position of the

exit routine in the list determines the order in which the exit routine is driven.

When an exit routine returns to its caller, it indicates whether additional exit

routines are to be called.

ABLIM=limit

A number from 0 to 2147483647 that specifies the abend limit for the type of

exit routine being defined. If the number of abends for an exit routine module

reaches the abend limit for the exit routine type, the module is removed from

the exit routine list and is not called until the exit routine type is refreshed.

BPE Exit List PROCLIB Member

Chapter 2. BPE Definition and Tailoring 17

|

This parameter is optional; the default is 1. If you specify a value of 0, there is

no abend limit.

 Related Reading: For complete information about refreshing user exit

routines, see “Refreshing User Exits in BPE” on page 44.

COMP =ims_component

An optional parameter that specifies the type of the IMS component that owns

the exit routine being defined. Possible values are:

BPE

Base Primitive Environment

CQS

Common Queue Server

HWS

IMS Connect

OM

Operations Manager

RM

Resource Manager

SCI

Structured Call Interface

 BPE processes only EXITDEF statements that:

v do not have COMP coded

v have COMP=BPE coded

v have COMP=ims_component coded (where ims_component matches the IMS

component that is currently running).

 The EXITDEF types provided by the various IMS components are described in:

v “BPE EXITDEF Types”

v “CQS EXITDEF Types” on page 19

v “HWS EXITDEF Types” on page 19

v “OM EXITDEF Types” on page 19

v “RM EXITDEF Types” on page 19

v “SCI EXITDEF Types” on page 20

BPE EXITDEF Types

INITTERM

Called once during early BPE initialization, and once during normal

termination. Refer to Chapter 4, “BPE User-Supplied Exit Routines,” on page 47

for more information on this exit routine.

STATS

Called periodically (timer-driven), and once during normal address space

shutdown, with statistics about BPE system functions. Optionally, the IMS

component running on top of BPE can provide statistics specific to its

operation. Refer to Chapter 4, “BPE User-Supplied Exit Routines,” on page 47

for more information on this exit routine.

 Important: All BPE-owned user exit routines are available to all IMS address

spaces running with BPE.

BPE Exit List PROCLIB Member

18 Base Primitive Environment Guide and Reference

|
|

|

|

|

|
|

CQS EXITDEF Types

CLNTCONN

Called during client connect and disconnect processing. Refer to the IMS

Version 9: Common Queue Server Guide and Reference for more information on

this exit routine.

INITTERM

Called during various phases of initialization and termination. Refer to the IMS

Version 9: Common Queue Server Guide and Reference for more information on

this exit routine.

OVERFLOW

Called during overflow threshold processing to select queue names for

overflow processing. Refer to IMS Version 9: Common Queue Server Guide and

Reference for more information on this exit routine.

STRSTAT

Called during checkpoint processing to allow you to gather structure statistics.

Refer to the IMS Version 9: Common Queue Server Guide and Reference for more

information on this exit routine.

STREVENT

Called for various structure events. For certain structure events, it also allows

you to gather structure statistics like the STRSTAT exit routine. Refer to the

IMS Version 9: Common Queue Server Guide and Reference for more information

on this exit routine.

HWS EXITDEF Types

XMLADAP

Called to perform XML-to-COBOL data conversion in IMS Connect.

 Refer to IMS Version 9: IMS Connect Guide and Reference for more information

on the XML-to-COBOL data conversion support

OM EXITDEF Types

CLNTCONN

Called during client command registration and deregistration processing.

INITTERM

Called during various phases of initialization and termination.

INPUT

Called to view command input to the Operations Manager. This exit routine

can either modify the command before execution or reject the command before

it is processed.

OUTPUT

Called to view output (for example, command response) from Operations

Manager to an automation client. The exit routine can modify the output

before it is returned to the originator of the command.

SECURITY

Called to allow user security checking prior to command execution.

RM EXITDEF Types

CLNTCONN

Called during client connect and disconnect processing.

INITTERM

Called during various phases of initialization and termination.

BPE Exit List PROCLIB Member

Chapter 2. BPE Definition and Tailoring 19

|

|
|

|
|

|
|
|

SCI EXITDEF Types

CLNTCONN

Called during client connect and disconnect processing.

INITTERM

Called during various phases of initialization and termination.

 Related Reading: See IMS Version 9: Common Service Layer Guide and Reference for

more information about Operations Manager, Resource Manager, and Structured

Call Interface exit routines.

Sample CQS User Exit List PROCLIB Member

A sample CQS user exit list PROCLIB member is shown in Figure 3. The sample

defines:

v One client connection exit routine

v Two INITTERM user exit routines

v Four overflow exit routines

v One structure statistic exit routine

v One CQS structure event user exit routine

**

* CQS USER EXIT LIST PROCLIB MEMBER *

**

#---#

DEFINE 1 CLIENT CONNECTION EXIT: CLCONX00 #

#-- #

EXITDEF(TYPE=CLNTCONN,EXITS=(CLCONX00))

#---#

DEFINE 2 INITTERM USER EXITS: MYCQSIT0 AND OEMCQIT0 #

WITH AN ABEND LIMIT OF 8.

#---#

EXITDEF(TYPE=INITTERM,EXITS=(MYCQSIT0,OEMCQIT0),ABLIM=8)

#---#

DEFINE 4 OVERFLOW EXITS: OVERFL01, OVERFL02, OVERFL03, OVERFL04 #

#---#

EXITDEF(TYPE=OVERFLOW,EXITS=(OVERFL01,

 OVERFL02,

 OVERFL03,

 OVERFL04))

#---#

DEFINE 1 STRUCTURE STATISTIC EXIT: STRSTAT0 #

#---#

EXITDEF(TYPE=STRSTAT,EXITS=(STRSTAT0))

#---#

DEFINE 1 CQS STRUCTURE EVENT USER EXIT (STREVNT0) WITH #

NO ABEND LIMIT #

#---#

EXITDEF(TYPE=STREVENT,EXITS=(STREVNT0),ABLIM=0)

Figure 3. Example of a CQS User Exit Routine List PROCLIB Member

BPE Exit List PROCLIB Member

20 Base Primitive Environment Guide and Reference

|
|

Sample OM User Exit List PROCLIB Member

A sample OM user exit list PROCLIB member is shown in Figure 4.The sample

defines:

v One OM init/term exit routine

v Two OM client connection exit routines

v One OM command input exit routine

v One OM command output exit routine

v Three OM security exit routines

Sample RM User Exit List PROCLIB Member

A sample RM user exit list PROCLIB member is shown in Figure 5 on page 22. The

sample defines:

v One RM init/term exit routine

v Two RM client connection exit routines

**

* OM USER EXIT LIST PROCLIB MEMBER *

**

#---#

Define one OM init/term exit: OMINITRM. #

#---#

EXITDEF(TYPE=INITTERM,EXITS=(OMINITRM))

#---#

Define 2 OM client connection exits: OMCLCN00 and OEMCLI00 #

with an abend limit of 2. #

#---#

EXITDEF(TYPE=CLNTCONN,EXITS=(OMCLCN00,OEMCLI00),ABLIM=2)

#---#

Define one OM command input exit: MYCMI000 #

with no abend limit. #

#---#

EXITDEF(TYPE=INPUT,EXITS=(MYCMI000),ABLIM=0)

#---#

Define one OM command output exit: MYCMO000 #

with no abend limit. #

#---#

EXITDEF(TYPE=OUTPUT,EXITS=(MYCMO000),ABLIM=0)

#---#

Define 3 OM security exits: OMSEC000,OMSEC001, and ZZZSEC00 #

#---#

EXITDEF(TYPE=SECURITY,EXITS=(OMSEC000,

 OMSEC001,

 ZZZSEC00))

Figure 4. Example of an OM User Exit Routine List PROCLIB Member

BPE Exit List PROCLIB Member

Chapter 2. BPE Definition and Tailoring 21

|
|

|
|

Sample SCI User Exit List PROCLIB Member

A sample SCI user exit list PROCLIB member is shown in Figure 6. The sample

defines:

v One SCI init/term exit routine

v Three SCI client connection exit routines

Sample BPE User Exit List PROCLIB Member

A sample BPE user exit list PROCLIB member is shown in Figure 7 on page 23.

The sample defines:

v One BPE init/term exit routine

v One BPE Statistics exit routine

**

* RM USER EXIT LIST PROCLIB MEMBER *

**

#---#

Define one RM init/term exit: RMINITRM. #

#---#

EXITDEF(TYPE=INITTERM,EXITS=(RMINITRM))

#---#

Define 2 RM client connection exits: RMCLCN00 and XYZCLCN0 #

with an abend limit of 6. #

#---#

EXITDEF(TYPE=CLNTCONN,EXITS=(RMCLCN00,XYZCLCN0),ABLIM=6)

Figure 5. Example of an RM User Exit Routine List PROCLIB Member

**

* SCI USER EXIT LIST PROCLIB MEMBER *

**

#---#

Define one SCI init/term exit: SCINITRM. #

#---#

EXITDEF(TYPE=INITTERM,EXITS=(SCINITRM))

#---#

Define 3 SCI client connection exits: SCCLCN00, SCCLCN10, #

and SCCLCN20 with an abend limit of 9. #

#---#

EXITDEF(TYPE=CLNTCONN,EXITS=(SCCLCN00,SCCLCN10,SCCLCN20),ABLIM=9)

Figure 6. Example of an SCI User Exit Routine List PROCLIB Member

BPE Exit List PROCLIB Member

22 Base Primitive Environment Guide and Reference

|
|

|

Sample Combined User Exit List PROCLIB Member

You can combine all of the preceding user exit list PROCLIB members into a single

shared member by using the COMP keyword on the EXITDEF statements, as

shown in Figure 8 on page 24. The sample defines:

v CQS user exit routines

v OM user exit routines

v RM user exit routines

v SCI user exit routines

v BPE exit routines

**

* BPE USER EXIT LIST PROCLIB MEMBER *

**

#---#

Define one BPE init/term exit: MYINIT00. #

#---#

EXITDEF(TYPE=INITTERM,EXITS=(MYINIT00))

#---#

Define 1 BPE Statistics exit: HHGSTAT0 with an abend limit of 42#

#---#

EXITDEF(TYPE=STATS,EXITS=(HHGSTAT0),ABLIM=42)

Figure 7. Example of a BPE User Exit Routine List PROCLIB Member

BPE Exit List PROCLIB Member

Chapter 2. BPE Definition and Tailoring 23

|

|

Note: If you use a single shared user exit list PROCLIB member, change the

EXITMBR statements in the BPE configuration PROCLIB member to point to the

shared user exit list PROCLIB member. Here is an example of how you might

change the EXITMBR statements:

User exit list PROCLIB member specifications

EXITMBR=(SHREXIT0,BPE) /* BPE user exit definitions */

EXITMBR=(SHREXIT0,CQS) /* CQS user exit definitions */

EXITMBR=(SHREXIT0,OM) /* OM user exit definitions */

EXITMBR=(SHREXIT0,RM) /* RM user exit definitions */

EXITMBR=(SHREXIT0,SCI) /* SCI user exit definitions */

* CQS USER EXIT ROUTINE DEFINITIONS *

EXITDEF=(TYPE=CLNTCONN,EXITS=(CLCONX00),COMP=CQS)

EXITDEF=(TYPE=INITTERM,EXITS=(MYCQSIT0,OEMCQIT0),ABLIM=8,COMP=CQS)

EXITDEF=(TYPE=OVERFLOW,EXITS=(OVERFL01,

 OVERFL02,

 OVERFL03,

 OVERFL04),COMP=CQS)

EXITDEF=(TYPE=STRSTAT,EXITS=(STRSTAT0),COMP=CQS)

EXITDEF=(TYPE=STREVENT,EXITS=(STREVENT),ABLIM=0,COMP=CQS)

* OM USER EXIT ROUTINE DEFINITIONS *

EXITDEF=(TYPE=INITTERM,EXITS=(OMINITRM),COMP=OM)

EXITDEF=(TYPE=CLNTCONN,EXITS=(OMCLCN00,OEMCLI00),ABLIM=2,COMP=OM)

EXITDEF=(TYPE=INPUT,EXITS=(MYCMI000),ABLIM=0,COMP=OM)

EXITDEF=(TYPE=OUTPUT,EXITS=(MYCMO000),ABLIM=0,COMP=OM)

EXITDEF=(TYPE=SECURITY,EXITS=(OMSEC000,

 OMSEC001,

 ZZZSEC00),COMP=OM)

* RM USER EXIT ROUTINE DEFINITIONS *

EXITDEF=(TYPE=INITTERM,EXITS=(RMINITRM),COMP=RM)

EXITDEF=(TYPE=CLNTCONN,EXITS=(RMCLCN00,XYZCLCN0),ABLIM=6,COMP=RM)

* SCI USER EXIT ROUTINE DEFINITIONS *

EXITDEF=(TYPE=INITTERM,EXITS=(SCINITRM),COMP=SCI)

EXITDEF=(TYPE=CLNTCONN,EXITS=(SCCLCN00,SCCLCN10,SCCLCN20),ABLIM=9,

 COMP=SCI)

* BPE EXIT DEFINITIONS *

EXITDEF=(TYPE=INITTERM,EXITS=(MYINIT00),COMP=BPE)

EXITDEF=(TYPE=STATS,EXITS=(HHGSTAT0),ABLIM=42,COMP=BPE)

Figure 8. Example of a Combined Exit Routine List PROCLIB Member

BPE Exit List PROCLIB Member

24 Base Primitive Environment Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 3. BPE Commands

This chapter describes the Base Primitive Environment (BPE) commands.

BPE provides a set of commands that you can issue to any IMS component that is

running in a BPE environment (CQS, RM, OM, SCI, and IMS Connect).

The following topics provide additional information:

v “BPE Command Syntax and Invocation”

v “BPE TRACETABLE Commands” on page 27

v “BPE DISPLAY VERSION Command” on page 35

v “BPE USEREXIT Commands” on page 36

BPE Command Syntax and Invocation

BPE supports two command formats: a verb-only format, and a verb-resource type

format.

The verb-only format consists of a verb, followed by zero or more keyword-value

pairs, with the values enclosed in parentheses.

 The verb-resource type format consists of a verb, a resource type, and zero or more

keyword value pairs.

verb

A command verb representing an action. Some verb examples are DISPLAY,

UPDATE, and REFRESH.

resourcetype

The type of resource that is operated on by the verb. Some resource examples

are TRACETABLE and USEREXIT.

keyword(value)

A set of zero or more keywords and values that represent attributes, filters, or

BPE Verb Only Command Syntax

��

verb

�

�

,

keyword(

value

)

��

BPE Verb-Resource Type Command Syntax

��

verb

resourcetype

�

�

,

keyword(

value

)

��

© Copyright IBM Corp. 2002, 2006 25

|
|

|

|

|

|

|

other modifiers that apply to the command. For example, NAME() to identify

the specific resources or LEVEL() to specify a trace level.

BPE Command Invocation

You can only invoke BPE commands through the z/OS MODIFY command. The

following diagram illustrates the general syntax for entering commands through

the modify interface.

F The z/OS modify command.

jobname

The jobname of the address space to which the command is directed.

command

The command being issued.

BPE Wildcard Character Support

Some parameters on BPE commands support wildcard characters for pattern

matching. For such parameters, you can use the following wildcard characters:

* Matches zero or more characters

% Matches exactly one character

The following examples illustrate some uses of wildcard characters.

BE* Matches any string beginning with ″BE″, of any length. For instance: BE,

BEE, BEEBLEBROX.

%%S Matches any three-character string ending with an ″S″. For instance: IMS,

CQS.

R*S*T%R

Matches any string beginning and ending with ″R″, having an ″S″,

followed by a ″T″ in the middle, with any number of intervening

characters between the first ″R″, the ″S″, and the ″T″, and exactly one

character between the ″T″ and the final ″R″. For example, ROASTER,

ROSTER, RESORTER, RESCEPTOR, RSTZR.

* Matches any string.

Specifying IMS Component Command Parameters

BPE commands enable you to display and update resources that BPE manages.

Some resource types are defined and owned by BPE itself. These resource types are

known as ″system resource types.″ Commands that specify system resource types

can be issued to any IMS component running in a BPE environment. For example,

BPE defines several BPE system trace table types like DISP, STG, and CBS. These

trace tables exist in every BPE address space. Commands to display and update

these trace table types can be issued to any BPE address space.

Other resource types are defined and owned by the IMS component that is using

BPE services. These resource types are known as ″component resource types″ or

″user-product resource types.″ Commands that specify component resource types

BPE Command Invocation

�� F jobname,command ��

BPE Command Syntax and Invocation

26 Base Primitive Environment Guide and Reference

can only be issued to the IMS component that defines those types. For example,

CQS defines several CQS-specific trace tables such as STR, CQS, and INTF.

Commands to display and update these trace table types can be issued only to

CQS address spaces.

BPE commands also provide the ability to restrict the resource types upon which a

command operates to either those owned by BPE, or to those owned by the IMS

component of the address space to which the command is issued. This is done

through the OWNER keyword on commands that support OWNER. Use

OWNER(BPE) to restrict the command operation to resource types that BPE owns and

defines (system resource types). Use OWNER(component_type) to restrict the

command operation to resource types that the IMS component address defines and

owns (component resource types). Table 2 lists the valid values for the OWNER

parameter, and the address space types to which they apply:

 Table 2. Valid Values for OWNER Parameter

OWNER Address Space Type

BPE Any IMS component running in a BPE address space

CQS Common Queue Server

HWS IMS Connect

OM Operations Manager

RM Resource Manager

SCI Structured Call Interface

BPE TRACETABLE Commands

The TRACETABLE resource type refers to the internal BPE-managed trace tables

defined either by BPE (for example: DISP, CBS, STG, LATC), or by the IMS

component using BPE (for example: CQS, OM, RM, SCI). Two command verbs

operate on the TRACETABLE resource type:

DISPLAY Display trace level and number of trace table pages of specified

trace tables.

UPDATE Update trace level attribute of specified trace tables.

Format of BPE DISPLAY TRACETABLE Command

Use this command to display the current attribute settings for the requested trace

tables.

��

DISPLAY

DIS

TRACETABLE

TRTAB

�

 ,

NAME(

trace_table_name

)

trace_table_name*

OWNER(

BPE

)

CQS

HWS

OM

RM

SCI

��

BPE Command Syntax and Invocation

Chapter 3. BPE Commands 27

|

|

Usage of BPE DISPLAY TRACETABLE Command

DISPLAY | DIS

A required parameter, which displays the attributes of the specified

resource.

TRACETABLE | TRTAB

A required parameter, which specifies that the resource type being acted

upon is a BPE-managed trace table.

NAME(trace_table_name)

A required parameter, which specifies the name of the trace table types

about which you want attributes displayed. You can specify a single trace

table name or a list of trace table names separated by commas. Trace table

names can contain wildcard characters. See “BPE Wildcard Character

Support” on page 26 for more information about using wildcard characters.

Trace table names can be BPE-defined trace tables or IMS

component-defined trace tables.

 You can display BPE-defined trace tables for any IMS component address

space that is using BPE. These BPE-defined trace table types are available:

AWE Asynchronous work element (AWE) trace table

CBS Control block services trace table

CMD Command trace table

DISP Dispatcher trace table

HASH

Hash trace table

ERR BPE Error trace table

LATC Latch trace table

MISC Miscellaneous trace table that is used only by IMS Service for trap

traces

SSRV System services trace table

STG Storage service trace table

USRX User exit routine trace table

 You can display CQS-defined trace tables only for CQS address spaces.

These CQS-defined trace table types are available:

CQS CQS trace table

ERR CQS error trace table

INTF CQS interface trace table

STR CQS structure trace table

You can display IMS Connect-defined trace tables only for IMS Connect

address spaces. These IMS Connect-defined trace table types are available:

CMDT

IMS Connect command activity trace table

ENVT Interface trace table

HWSI IMS Connect to OTMA driver trace table

BPE TRACETABLE Commands

28 Base Primitive Environment Guide and Reference

|
|

|
|

||

||

HWSN

IMS Connect to local option driver trace table

HWSO

IMSPlex driver (IPDC) tracetable.

HWSW

IMS Connect to TCP/IP driver trace table

OMDR

Communication protocol activity (SCI calls) trace table

OTMA

OTMA communication driver trace table

PCDR Local option driver trace table

TCPI TCP/IP communication driver trace table

You can display OM-defined trace tables only for OM address spaces.

These OM-defined trace table types are available:

CSL Common Service Layer (CSL) trace table

ERR OM error trace table

OM Operations Manager (OM) processes trace table

PLEX IMSplex trace table for OM processing for a specific IMSplex

You can display RM-defined trace tables only for RM address spaces.

These RM-defined trace table types are available:

CSL Common Service Layer (CSL) trace table

ERR RM error trace table

PLEX IMSplex trace table for RM processing for a specific IMSplex

RM Resource Manager (RM) processes trace table

You can display SCI-defined trace tables only for SCI address spaces. These

SCI-defined trace table types are available:

CSL Common Service Layer (CSL) trace table

ERPL SCI Error Parameter List trace table

ERR SCI error trace table

INTF SCI interface trace table

INTP SCI interface parameter trace table

PLEX IMSplex trace table for SCI processing for a specific IMSplex

SCI Structured Call Interface (SCI) processes trace table

OWNER(BPE | CQS | HWS | OM | RM | SCI)

An optional parameter that specifies the owner of the trace table type or

types about which you want attributes displayed. You can specify one of

the following values:

BPE For all IMS components that are running in a BPE address space

CQS For CQS address spaces only

HWS For IMS Connect address spaces only

OM For OM address spaces only

BPE TRACETABLE Commands

Chapter 3. BPE Commands 29

|
|

|
|

|
|

|
|

|
|

||

||

|

|

RM For RM address spaces only

SCI For SCI address spaces only

The OWNER parameter acts as a filter to help you select which trace tables

you want to display. For example, you could specify NAME(*) OWNER(CQS)

to display all of the CQS-defined trace table types (CQS, ERR, STR, and

INTF) in a CQS address space. You could specify NAME(*) OWNER(BPE) to

display all of the BPE-defined trace table types in any BPE-managed

address space. If OWNER is omitted, then both BPE and component trace

tables might be displayed (depending on the tables specified on NAME).

BPE DISPLAY TRACETABLE Command Output

The DISPLAY TRACETABLE command output consists of a header line, one line

per selected trace table, and one message BPE0032I line indicating that the

command has completed. Here is an example.

BPE0030I TABLE OWNER LEVEL #PAGES

BPE0000I DISP BPE HIGH 12

BPE0000I STR CQS MEDIUM 8

BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

These columns are in the DISPLAY TRACETABLE output:

TABLE Specifies the name of the trace table type about which information

is being displayed on the current row. Either BPE or the product

using BPE owns this trace table.

OWNER Specifies the IMS component that owns the trace table. BPE-owned

trace tables are system trace tables, and exist in all IMS component

address spaces that use BPE. Trace tables that are specific to an

IMS component show the 1- to 4-character component identifier in

this column.

LEVEL Specifies the current level setting of the trace table. A trace table’s

level determines the volume of trace data collected. These levels

are possible:

NONE No trace data is being written to the table.

ERROR Only traces for error or exception conditions are

being written into the table.

LOW Only major event trace entries are written into the

table.

MEDIUM Major event trace entries and some minor event

trace entries are written into the table.

HIGH All trace entries are written into the table.

INACTV The trace table is inactive and cannot be used. This

status occurs only when BPE was unable to get any

storage for the trace table. No tracing will be done

for the indicated table type, and you cannot change

the level for the trace table with the UPDATE

TRACETABLE command. You must restart the

address space in order to use the trace table again.

#PAGES Specifies the number of 4K (4096 byte) pages allocated for the trace

table type.

BPE TRACETABLE Commands

30 Base Primitive Environment Guide and Reference

|

Command Example 1

Display the status of the BPE dispatcher trace table (DISP).

Command:

 F CQS1,DISPLAY TRACETABLE NAME(DISP)

Output:

 BPE0030I TABLE OWNER LEVEL #PAGES

 BPE0000I DISP BPE HIGH 12

 BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Command Example 2

Display the status of all CQS traces.

Command:

 F CQS1,DIS TRTAB NAME(*) OWNER(CQS)

Output:

 BPE0030I TABLE OWNER LEVEL #PAGES

 BPE0000I CQS CQS MEDIUM 4

 BPE0000I ERR CQS HIGH 4

 BPE0000I INTF CQS LOW 8

 BPE0000I STR CQS HIGH 8

 BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Command Example 3

Display the status of all traces in an SCI address space.

Command:

 F SCI,DIS TRTAB NAME(*)

Output:

 BPE0030I TABLE OWNER LEVEL #PAGES

 BPE0000I AWE BPE HIGH 6

 BPE0000I CBS BPE HIGH 6

 BPE0000I CMD BPE HIGH 2

 BPE0000I CSL SCI HIGH 8

 BPE0000I DISP BPE HIGH 8

 BPE0000I ERPL SCI HIGH 8

 BPE0000I ERR BPE HIGH 2

 BPE0000I ERR SCI HIGH 4

 BPE0000I HASH BPE HIGH 8

 BPE0000I INTF SCI HIGH 8

 BPE0000I INTP SCI HIGH 16

 BPE0000I LATC BPE HIGH 8

 BPE0000I MISC BPE HIGH 1

 BPE0000I PLEX SCI HIGH 8

 BPE0000I SCI SCI HIGH 8

 BPE0000I SSRV BPE HIGH 4

 BPE0000I STG BPE HIGH 8

 BPE0000I USRX BPE HIGH 4

 BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Command Example 4

Display the status of all OM traces.

Command:

 F OM,DIS TRTAB NAME(*) OWNER(OM)

BPE TRACETABLE Commands

Chapter 3. BPE Commands 31

Output:

 BPE0030I TABLE OWNER LEVEL #PAGES

 BPE0000I CSL OM HIGH 4

 BPE0000I ERR OM HIGH 4

 BPE0000I OM OM HIGH 4

 BPE0000I PLEX OM HIGH 8

 BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Command Example 5

Display the status of the PLEX trace and all traces beginning with ″C″ in the RM

address space.

Command:

 F RM,DIS TRTAB NAME(PLEX,C*)

Output:

 BPE0030I TABLE OWNER LEVEL #PAGES

 BPE0000I CBS BPE HIGH 6

 BPE0000I CMD BPE HIGH 2

 BPE0000I CSL RM HIGH 4

 BPE0000I PLEX RM HIGH 8

 BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Format of BPE UPDATE TRACETABLE Command

Use this command to change the trace level setting for the requested trace tables.

Usage of BPE UPDATE TRACETABLE Command

UPDATE | UPD

A required parameter, which specifies that the action against the trace table

is to update its attributes.

TRACETABLE | TRTAB

A required parameter, which specifies that the resource type being acted

upon is a BPE-managed trace table.

NAME(trace_table_name)

A required parameter, which specifies the name of the trace table type or

types that you want to update. You can specify a single trace table name or

��

UPDATE

UPD

TRACETABLE

TRTAB

�

 ,

NAME(

trace_table_name

)

trace_table_name*

OWNER(

BPE

)

CQS

HWS

OM

RM

SCI

�

�
LEVEL(

NONE

)

ERROR

LOW

MEDIUM

HIGH

 ��

BPE TRACETABLE Commands

32 Base Primitive Environment Guide and Reference

|

a list of trace table names separated by commas. Trace table names can

contain wildcard characters. See “BPE Wildcard Character Support” on

page 26 for more information about using wildcard characters. Trace table

names can be BPE-defined trace tables or IMS component-defined trace

tables.

 You can update BPE-defined trace tables for any IMS component address

space that is using BPE. These BPE-defined trace table types are available:

AWE Asynchronous work element (AWE) trace table

CBS Control block services trace table

CMD Command trace table

DISP Dispatcher trace table

ERR BPE Error trace table

HASH

Hash trace table

LATC Latch trace table

MISC Miscellaneous trace table that is used only by IMS Service for trap

traces

SSRV System services trace table

STG Storage service trace table

USRX User exit routine trace table

 You can update CQS-defined trace tables only for CQS address spaces.

These CQS-defined trace table types are available:

CQS CQS trace table

ERR CQS error trace table

INTF CQS interface trace table

STR CQS structure trace table

You can update IMS Connect-defined trace tables only for IMS Connect

address spaces. These IMS Connect-defined trace table types are available:

CMDT

IMS command activity trace table

ENVT Interface trace table

HWSI IMS Connect to OTMA driver trace table

HWSN

IMS Connect to local option driver trace table

HWSO

IMSPlex driver (IPDC) tracetable

HWSW

IMS Connect to TCP/IP driver trace table

OMDR

Communication protocol activity (SCI calls) trace table

OTMA

OTMA communication driver trace table

BPE TRACETABLE Commands

Chapter 3. BPE Commands 33

||

||

||

||

|

|

PCDR Local option driver trace table

TCPI TCP/IP communication driver trace table

You can update OM-defined trace tables only for OM address spaces.

These OM-defined trace table types are available:

CSL Common Service Layer (CSL) trace table

ERR OM error trace table

OM Operations Manager (OM) processes trace table

PLEX IMSplex trace table for OM processing for a specific IMSplex

You can update RM-defined trace tables only for RM address spaces. These

RM-defined trace table types are available:

CSL Common Service Layer (CSL) trace table

ERR RM error trace table

PLEX IMSplex trace table for RM processing for a specific IMSplex

RM Resource Manager (RM) processes trace table

You can update SCI-defined trace tables only for SCI address spaces. These

SCI-defined trace table types are available:

CSL Common Service Layer (CSL) trace table

ERPL SCI Error Parameter List trace table

ERR SCI error trace table

INTF SCI interface trace table

INTP SCI interface parameter trace table

PLEX IMSplex trace table for SCI processing for a specific IMSplex

SCI Structured Call Interface (SCI) processes trace table

OWNER(BPE | CQS | HWS | OM | RM | SCI)

An optional parameter that specifies the owner of the trace table type or

types that you want to update. You can specify one of the following

values:

BPE For all IMS components that are running in a BPE address space

CQS For CQS address spaces only

OM For OM address spaces only

HWS For HWS address spaces only

RM For RM address spaces only

SCI For SCI address spaces only

The OWNER parameter acts as a filter to help you select which trace tables

you want to update. For example, you could specify NAME(*) OWNER(CQS)

to update all of the CQS-defined trace table types (CQS, ERR, STR, and

INTF) in a CQS address space. You could specify NAME(*) OWNER(BPE) to

update all of the BPE-defined trace table types in any BPE-managed

address space. If OWNER is omitted, then both BPE and component trace

tables might be updated (depending on the tables specified on NAME).

LEVEL(level)

An optional parameter that sets the new tracing level for the specified

BPE TRACETABLE Commands

34 Base Primitive Environment Guide and Reference

|

|

trace tables. If LEVEL is omitted, the level of the specified trace tables is

not changed. These levels are possible:

NONE No trace data is being written to the table.

ERROR Only traces for error or exception conditions are being

written into the table.

LOW Only major event trace entries are written into the table.

MEDIUM Major event trace entries and some minor event trace

entries are written into the table.

HIGH All trace entries are written into the table.

Important: You cannot change the level for the trace table type ERR. BPE

forces the level to HIGH to ensure that error diagnostics are captured. Any

level that you specify for the ERR trace table is ignored.

BPE UPDATE TRACETABLE Command Output

The UPDATE TRACETABLE command output consists of message BPE0032I indicating

that the command has completed:

 BPE0032I UPDATE TRACETABLE COMMAND COMPLETED

Command Example 1

Update the level of the BPE dispatcher trace table (DISP) to HIGH.

Command:

 F CQS1,UPDATE TRACETABLE NAME(DISP) LEVEL(HIGH)

Output:

 BPE0032I UPDATE TRACETABLE COMMAND COMPLETED

Command Example 2

Update the level of all SCI trace tables to MEDIUM.

Important: You cannot change the level for the trace table type ERR, even when

using a wildcard character to select all tables with a given owner, as shown in this

example--NAME(*). BPE forces the level to HIGH to ensure that error diagnostics

are captured. The level for trace table type ERR is set to HIGH, but other trace

table types are set to MEDIUM

Command:

 F SCI,UPD TRTAB NAME(*) OWNER(SCI) LEVEL(MEDIUM)

Output:

 BPE0032I UPDATE TRACETABLE COMMAND COMPLETED

BPE DISPLAY VERSION Command

Use this command to display both the version of the IMS component that is using

BPE, and the version of the BPE in use.

BPE TRACETABLE Commands

Chapter 3. BPE Commands 35

|

|

|

|

Format of BPE DISPLAY VERSION Command

Usage of BPE DISPLAY VERSION Command

DISPLAY | DIS

A required parameter, which specifies that the action against the specified

resource is to display attributes of the resource.

VERSION | VER

A required parameter, which specifies that the resource types being acted

upon are the version number of the IMS component and the BPE in the

current address space.

DISPLAY VERSION Command Output

The DISPLAY VERSION command output consists of a single display output line

in the format BPE00001 compVERSION=cv.cr.cp BPE VERSION=bv.br.bp.

v comp is the IMS component ID for the address space. It is one to four characters

long and can have one of the following values:

– CQS (Common Queue Server)

– HWS (IMS Connect)

– OM (Operations Manager)

– RM (Resource Manager)

– SCI (Structured Call Interface)
v cv.cr.cp is the full version number of the IMS component, where cv is the

version, cr is the release, and cp is the point release. Similarly, bv.br.bp indicates

the full version number of the BPE running in the address space.

Command Example 1

Display the version of a CQS address space.

Command:

 F CQS1,DISPLAY VERSION

Output:

BPE00001 CQS VERSION = 1.3.0 BPE VERSION = 1.4.0

Command Example 2

Display the version of an RM address space.

Command:

 F RM1,DISPLAY VERSION

Output:

BPE00001 RM VERSION = 1.1.0 BPE VERSION = 1.4.0

BPE USEREXIT Commands

Note: Throughout this topic, the term “user exit routine” means “user-supplied

exit routine.”

�� DISPLAY

DIS
 VERSION

VER
 ��

BPE TRACETABLE Commands

36 Base Primitive Environment Guide and Reference

|

|

|

The USEREXIT resource type refers to the user exit types defined to and managed

by either BPE or the IMS component using BPE (for example, CQS).

DISPLAY Display attributes of specified user exit types.

REFRESH Load new copies of the user exit modules for specified user exit

types.

Format of BPE DISPLAY USEREXIT Command

Use this command to display attributes for all modules associated with the

specified user exit types.

Usage of BPE DISPLAY USEREXIT Command

DISPLAY | DIS

A required parameter, which specifies that the action against the specified

resource is to display attributes of the resource.

USEREXIT | USRX

A required parameter, which specifies that the resource type being acted

upon is a BPE-managed user exit type.

NAME(user_exit_type_name)

A required parameter, which specifies the name of the user exit type or

types about which you want attributes displayed. You can specify a single

user exit type name or a list of user exit type names separated by commas.

User exit type names can contain wildcard characters.

 Related Reading:

 For more information about using wildcards, see “BPE Wildcard Character

Support” on page 26.

 Important: The name or names specified in this parameter are the names

of user exit types, not the names of individual user exit modules.

 BPE and each address space that can use BPE have different user exit

types. As specified by OWNER(BPE), BPE’s user exit types include:

INITTERM Initialization-Termination user exit

STATS BPE system functions statistics user exit

 As specified by OWNER(CQS), the following user exit types are defined in

all CQS address spaces:

CLNTCONN Client Connection user exit

INITTERM Initialization-Termination user exit

OVERFLOW Queue Overflow user exit

STRSTAT Structure statistics user exit

STREVENT Structure event user exit

As specified by OWNER(OM), the following user exit types are defined in

all OM address spaces:

CLNTCONN Client Connection command registration and deregistration

user exit

�� ��

BPE USEREXIT Commands

Chapter 3. BPE Commands 37

|
|

||

||

|
|

INITTERM Initialization-Termination user exit

INPUT Command input user exit

OUTPUT Output user exit

SECURITY Security checking user exit

As specified by OWNER(RM), the following user exit types are defined in

all RM address spaces:

CLNTCONN Client Connection and Disconnection user exit

INITTERM Initialization-Termination user exit

As specified by OWNER(SCI), the following user exit types are defined in

all SCI address spaces:

CLNTCONN Client Connection and Disconnection user exit

INITTERM Initialization-Termination user exit

Related Reading:

v See the IMS Version 9: Common Queue Server Guide and Reference for more

information about the CQS user exit routine types.

v See the IMS Version 9: Common Service Layer Guide and Reference for more

information about the OM, RM, and SCI user exit routine types.

OWNER(BPE | CQS | OM | RM | SCI)

An optional parameter that specifies the owner of the user exit type or

types about which you want attributes displayed. You can specify one of

the following values:

BPE

For all IMS components that are running in a BPE address space

CQS

For CQS address spaces only

OM

For OM address spaces only

RM

For RM address spaces only

SCI

For SCI address spaces only

 The OWNER parameter acts as a filter to help you select the user exit

types that you want to display. For example, you could specify NAME(*)

OWNER(CQS) to display all of the CQS-defined user exit types in a CQS

address space. If OWNER is omitted, then both BPE and component user exits

can be displayed (depending on the exits specified on NAME).

SHOW(attribute)

An optional parameter that specifies the attributes you want to display

about the requested user exits.

 When you display information about user exits, each row of display output

contains the requested attributes for one user exit module, in columns.

Every display for user exits contains the columns labeled EXITTYPE (the

type of the exit), and MODULE (the load module name of the exit).

Additionally, any of the following attributes can be requested by using the

SHOW parameter:

BPE USEREXIT Commands

38 Base Primitive Environment Guide and Reference

ABENDS The number of abends that have occurred in the user exit

module since the last user exit refresh of that module (or

since address space initialization if no refreshes have

occurred). BPE keeps track of the number of abends that

have occurred in each user exit module. When this number

reaches the number defined on the ABLIM= parameter of

the EXITDEF statement for the exit’s type, BPE stops

calling the module. If the user exit module is refreshed,

this count is reset to zero, and BPE calls the module again.

 The maximum value that can be displayed in this field is

2147483647 (231-1). If the abend count exceeds this value,

2147483647 is displayed.

ABLIM The abend limit count for the user exit type, as specified

on the ABLIM= parameter on the EXITDEF statement for

the user exit type in the BPE exit list PROCLIB member.

This is the number of times the user exit module is

allowed to abend before BPE stops calling the user exit. A

value of 0 indicates that there is no abend limit.

 The maximum value that can be displayed in this field is

2147483647 (231-1).

ACTIVE The number of currently active instances of the user exit.

This is a point-in-time number that represents the number

of calls to the user exit that have not yet returned.

 The maximum value that can be displayed in this field is

999999. If the active count exceeds this value, 999999 is

displayed.

CALLS The number of calls to the user exit since the last user exit

refresh.

 For performance reasons, serialization is not obtained when

BPE collects this number. For an exit type that can run

multiple instances in parallel, this number should be

considered an approximation only.

 The maximum value that can be displayed in this field is

2147483647 (231-1). If the call count exceeds this value,

2147483647 is displayed.

ENTRYPT The entry point address of the user exit module.

ETIME The total (cumulative) elapsed time spent in the exit

module since it was last refreshed, in milliseconds.

 For performance reasons, serialization is not obtained when

BPE collects this number. For an exit type that can run

multiple instances in parallel, this number should be

considered an approximation only.

 The maximum value that can be displayed in this field is

2147483647 (231-1). If the elapsed number of milliseconds

exceeds this value, 2147483647 is displayed.

LOADPT The load point address of the user exit module.

OWNER The IMS component that owns the user exit type.

BPE-owned user exit types are system exit types that exist

in all IMS component address spaces that use BPE. User

BPE USEREXIT Commands

Chapter 3. BPE Commands 39

|
|
|
|

exit types that are specific to the component show the 1- to

4-character component identifier in this column (for

example, CQS).

RTIME This is the local date and time that the user exit module

was last refreshed (or initially loaded, if no refreshes have

occurred). The format of this output field is:

 yyyy-mm-dd hh:mm:ss.th

SIZE The size of the user exit load module, in bytes (displayed

in hexadecimal).

TEXT 27 bytes starting from offset +04 from the module’s entry

point, translated to EBCDIC, with non-printable characters

replaced by periods (.). This is a common location for

module identification information. If your user exits

contain printable identification data at this point in the

module, the TEXT option enables that information to be

displayed.

If the SHOW parameter is not specified, the default attributes displayed

after the EXITTYPE and MODULE are OWNER, ACTIVE, and ABENDS.

 The order in which you list the attributes on the SHOW parameter has no

effect on the order the attributes are displayed. BPE determines the order

of the attribute columns in the display output. This order is as follows:

 1. OWNER

 2. ACTIVE

 3. ABENDS

 4. ABLIM

 5. CALLS

 6. ETIME

 7. RTIME

 8. ENTRYPT

 9. LOADPT

10. SIZE

11. TEXT

Important: It is possible to request so many attributes that the length of

the output line is too long to display with a WTO. If this happens, the

command is processed, but some lines might be truncated. The maximum

line length that BPE displays is 126 characters.

BPE DISPLAY USEREXIT Command Output

The DISPLAY USEREXIT command output consists of a header line, one line per user

exit module about which information is being displayed, and one message,

BPE0032I line indicating the command has completed.

Command:

 F CQS1,DISPLAY USEREXIT NAME(INITTERM,STRSTAT)

Output:

BPE USEREXIT Commands

40 Base Primitive Environment Guide and Reference

BPE0030I EXITTYPE MODULE OWNER ACTIVE ABENDS

 BPE0000I INITTERM MYINIT00 CQS 0 0

 BPE0000I INITTERM ZZZINIT0 CQS 0 0

 BPE0000I STRSTAT MYSTAT00 CQS 1 2

 BPE0032I DISPLAY USEREXIT COMMAND COMPLETED

The EXITTYPE and MODULE columns are present for all DISPLAY USEREXIT

commands, regardless of what is specified on SHOW. When multiple exit modules

are listed for a single user exit type, they are listed in the order in which they are

called.

Command Example 1

Display the status of the CQS structure event user exit type.

Command:

 F CQS1,DISPLAY USEREXIT NAME(STREVENT)

Output:

 BPE0030I EXITTYPE MODULE OWNER ACTIVE ABENDS

 BPE0000I STREVENT STREVX00 CQS 1 0

 BPE0000I STREVENT ZZZSTEV0 CQS 0 0

 BPE0032I DISPLAY USEREXIT COMMAND COMPLETED

In this example, there are two structure event exit modules defined that are called

for CQS structure events. STREVX00 is called first, followed by ZZZSTEV0.

Command Example 2

Display the number of calls to, the elapsed time spent in, and the abend limit for

all CQS user exit types.

Command:

 F CQS1,DIS USRX NAME(*) OWNER(CQS) SHOW(CALLS,ETIME,ABLIM)

Output:

 BPE0030I EXITTYPE MODULE ABLIM CALLS ETIME

 BPE0000I CLNTCONN CLCONX00 0 2 12

 BPE0000I INITTERM MYCQSIT0 0 1 2

 BPE0000I INITTERM OEMCQIT0 0 1 162

 BPE0000I OVERFLOW OVERFL01 5 3 6

 BPE0000I OVERFLOW OVERFL02 5 3 19

 BPE0000I OVERFLOW OVERFL03 5 3 9

 BPE0000I OVERFLOW OVERFL04 5 3 15593

 BPE0000I STREVENT STREVNT0 10 542 628

 BPE0000I STRSTAT STRSTAT0 1 36 1889

 BPE0000I STRSTAT STRSTA10 1 36 241

 BPE0032I DIS USRX COMMAND COMPLETED

Command Example 3

Display the entry point, load point, and size of all of the SCI CLNTCONN user

exit modules.

Command:

 F SCI,DIS USRX NAME(CLNTCONN) SHOW(SIZE,ENTRYPT,LOADPT)

Output:

BPE USEREXIT Commands

Chapter 3. BPE Commands 41

|
|
|

BPE0030I EXITTYPE MODULE ENTRYPT LOADPT SIZE

 BPE0000I CLNTCONN SCCLCN00 8B864D78 8B864D78 00000458

 BPE0000I CLNTCONN SCCLCN10 8BA14200 8BA14200 00001C10

 BPE0000I CLNTCONN SCCLCN20 8BA18EE8 8BA18AF0 00000AB0

 BPE0032I DIS USRX COMMAND COMPLETED

Command Example 4

Display the first part of the module text for all of the BPE user exits in the OM

address space.

Command:

 F OM,DIS USRX NAME(*) OWNER(BPE) SHOW(TEXT)

Output:

 BPE0030I EXITTYPE MODULE TEXT

 BPE0000I INITTERM MYINIT00 .MYINIT00+20010615+17:47...

 BPE0000I STATS HHGSTAT0 .HHGSTAT0+20010615+08:47...

 BPE0032I DIS USRX COMMAND COMPLETED

Command Example 5

Display the refresh time for all of the RM INITTERM modules.

Command:

 F RM,DIS USRX NAME(*) OWNER(RM) SHOW(RTIME)

Output:

 BPE0030I EXITTYPE MODULE RTIME

 BPE0000I INITTERM RMINITRM 2001-06-15 16:48:22.39

 BPE0032I DIS USRX COMMAND COMPLETED

Format of BPE REFRESH USEREXIT Command

Usage of BPE REFRESH USEREXIT Command

REFRESH | REF

A required parameter, which specifies that the action against the specified

resources is to refresh the resources.

USEREXIT | USRX

A required parameter, which specifies that the resource type being acted

upon is a BPE-managed user exit type.

NAME(user_exit_type_name)

A required parameter, which specifies the name of the user exit type or

types that you want to refresh. You can specify a single user exit type

name or a list of user exit type names separated by commas. User exit type

names can contain wildcard characters.

��

REFRESH

REF

USEREXIT

USRX

�

 ,

NAME(

user_exit_type_name

)

user_exit_type_name*

OWNER(

BPE

)

CQS

OM

RM

SCI

��

BPE USEREXIT Commands

42 Base Primitive Environment Guide and Reference

|
|
|

Related Reading: For more information about using wildcard characters,

see “BPE Wildcard Character Support” on page 26.

 Important: The names specified in this parameter are the names of user

exit types, not the names of individual user exit modules.

 BPE and each address space that can use BPE have different user exit

types. BPE’s user exit types, as specified by OWNER(BPE), include the

following:

INITTERM Initialization-Termination user exit

STATS BPE system functions statistics user exit

 User exit types are defined in all CQS address spaces, as specified by

OWNER(CQS), and include the following:

CLNTCONN Client Connection user exit

INITTERM Initialization-Termination user exit

OVERFLOW Queue Overflow user exit

STRSTAT Structure statistics user exit

STREVENT Structure event user exit

User exit types are defined in all OM address spaces, as specified by

OWNER(OM), and include the following:

CLNTCONN Client Connection command registration and deregistration

user exit

INITTERM Initialization-Termination user exit

INPUT Command input user exit

OUTPUT Output user exit

SECURITY Security checking user exit

User exit types are defined in all RM address spaces, as specified by

OWNER(RM), and include the following:

CLNTCONN Client Connection and Disconnection user exit

INITTERM Initialization-Termination user exit

User exit types are defined in all SCI address spaces, as specified by

OWNER(SCI), and include the following:

CLNTCONN Client Connection and Disconnection user exit

INITTERM Initialization-Termination user exit

Related Reading:

v See IMS Version 9: Common Queue Server Guide and Reference for more

information about the CQS user exit routine types.

v See IMS Version 9: Common Service Layer Guide and Reference for more

information about the OM, RM, and SCI user exit routine types.

OWNER(BPE | CQS | OM | RM | SCI)

An optional parameter that specifies the owner of the user exit type or

types that you want to refresh. You can specify one of the following values:

BPE For all IMS components that are running in a BPE address space.

CQS For CQS address spaces only.

BPE USEREXIT Commands

Chapter 3. BPE Commands 43

OM For OM address spaces only.

RM For RM address spaces only.

SCI For SCI address spaces only.

 The OWNER parameter acts as a filter to help you select the user exit

types that you want to refresh. For example, you could specify NAME(*)

OWNER(CQS) to refresh all of the CQS-defined user exit types in a CQS

address space. If OWNER is omitted, then both BPE and component user exits

can be refreshed (depending on the exits specified on NAME).

Refreshing User Exits in BPE

The REFRESH USEREXIT command does two things. It causes BPE to reprocess the

user exit PROCLIB members specified in the BPE configuration PROCLIB member.

It also reloads the user exit modules currently listed in the user exit PROCLIB

members for the types specified on the command. This command enables you to

make updates to your user exits without stopping and restarting the address space.

When you enter the REFRESH USEREXIT command, BPE performs the following

processing:

v Reads any user exit PROCLIB members that are specified on EXITMBR=

statements in the BPE configuration PROCLIB member. Because BPE re-reads

these members at the time you issue the command, you can edit the user exit

PROCLIB members prior to issuing the REFRESH command and make changes to

the user exit definitions. BPE does not re-read the main BPE configuration

PROCLIB member, so you cannot change the names of the user exit PROCLIB

members, only their contents.

v Loads the user exit modules specified on the EXITDEF= statements for the user

exit types specified on the command.

v Quiesces all current user exits. This means that the command waits for any

active exits to complete processing and delays any new calls to the current exits.

This ensures that no user exit is running while the exit is being refreshed.

v Replaces BPE control block pointers to the previous user exit modules with

pointers to the newly loaded modules. These pointers are used to manage the

calling of the exits.

v Resumes the user exits and allows calls to be made to the newly-loaded exits.

v Deletes the old copy of the user exits.

BPE loads the new copies of the user exit modules before deleting the old

modules. If an error occurs during this process (for example, a module could not

be loaded or BPE internal control block storage could not be obtained), BPE fails

the command and leaves the old copies of the user exits in effect. All modules of

the specified user exit types must be loaded successfully for the command to

complete successfully.

When a user exit module is refreshed, its abend count is reset to zero. This means

that a user exit module that had reached its abend limit (specified by the ABLIM

parameter on the EXITDEF statement) and was no longer being called by BPE is

again called.

Important: If you changed the ABLIM parameter for a user exit in the PROCLIB

member, the new value of ABLIM takes effect after the refresh command.

BPE USEREXIT Commands

44 Base Primitive Environment Guide and Reference

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|

|

|
|
|
|
|
|

|
|
|
|

|
|

Considerations for Refreshing User Exits

v When you refresh a user exit type, BPE reloads all exit modules defined for that

type. The new copies of the modules will be at a different virtual address than

the old copies. Modules that are re-entrant will operate properly. However, if

your modules are not re-entrant and they store data within themselves, they

must be able to tolerate being reloaded and losing the information previously

stored within them.

Attention: Code and link edit all user exit modules as re-entrant to avoid this

condition.

v If you refresh a previously loaded user exit module, BPE continues to pass the

same static work area that was used by the previous copy of the module. If the

new version of the module has a different mapping or use of this area than the

previous version, the new version must contain toleration code that can handle

the old-style formatted data within this static work area.

Recommendation: Place a version number in the static work area, so that your

exits can recognize when they are using a different data structure within this

work area.

v If you remove a user exit module from an EXITDEF list and refresh the exits,

BPE deletes the static work area associated with the removed exit module. If you

later add the module back to the EXITDEF list and refresh the exits, the module

gets a new (cleared) static work area, not the work area it had previously.

v If your user exits are being managed by link-lookaside (LLA) using virtual

lookaside facility (VLF) or an equivalent product, you must ensure that the

copies of the modules being refreshed are updated in LLA prior to issuing the

REFRESH USEREXIT command. See the MVS Initialization and Tuning Guide for

information on LLA-managed libraries.

v If you have user exits that issue z/OS WAITs for long periods of time (for

example, a WAIT for an external event that may be delayed, such as a write to

operator with reply (WTOR)), then issuing a REFRESH USEREXIT command could

cause a performance problem or work stoppage. This is because BPE has to

quiesce the user exits in order to process the REFRESH command. BPE must wait

until all currently-called user exits complete before it can perform the user exit

refresh. BPE prevents any new calls to user exits until after the command

completes. If a user exit has been called and does not return to BPE for a long

period of time, the REFRESH command is delayed until the exit returns. No other

user exits can be called while BPE is waiting, so the processes that are invoking

the user exits are also put into a wait state.

Recommendation: Ensure that your user exits avoid long WAITs, and avoid

issuing services that might WAIT.

BPE REFRESH USEREXIT Command Output

The REFRESH USEREXIT command output consists of message, BPE0032I indicating

that the command has completed:

 BPE0032I REFRESH USEREXIT COMMAND COMPLETED

Command Example 1

Refresh all user exit modules.

Command:

 F CQS1,REFRESH USEREXIT NAME(*)

Output:

 BPE0032I REFRESH USEREXIT COMMAND COMPLETED

BPE USEREXIT Commands

Chapter 3. BPE Commands 45

|

|
|

|
|

|
|
|

Command Example 2

Refresh all user exit modules for the OM command input and output exit types.

Command:

 F OM,REF USRX NAME(INPUT,OUTPUT)

Output:

 BPE0032I REF USRX COMMAND COMPLETED

BPE USEREXIT Commands

46 Base Primitive Environment Guide and Reference

Chapter 4. BPE User-Supplied Exit Routines

This chapter describes the Base Primitive Environment (BPE) user exit routines.

BPE user exit routines enable you to customize and monitor address spaces built

on the Base Primitive Environment. BPE-defined user exit routine types are

available to all IMS component address spaces that run with BPE. You write these

exit routines. No sample exit routines are provided. The BPE user exit routines are

given control in the address space in an authorized state.

Following is a list of the user exit routines and their functions.

BPE Initialization-Termination

Called during BPE initialization and normal BPE termination.

BPE Statistics

Called at regular intervals during the life of a BPE address space, and a

final time at normal address shutdown, to gather address-space related

statistics.

Related Reading: For complete information about BPE interfaces and services that

are available to user exit routines, see Chapter 5, “BPE User-Supplied Exit Routine

Interfaces and Services,” on page 61.

The following topics provide additional information:

v “General BPE User-Supplied Exit Routine Information”

v “BPE Initialization-Termination User-Supplied Exit Routine”

v “BPE Statistics User-Supplied Exit Routine” on page 49

This chapter contains Product-sensitive Programming Interface information.

General BPE User-Supplied Exit Routine Information

Recommendation: Write BPE user exit routines in assembler, not in a high level

language. BPE does not support exit routines that run under Language

Environment for z/OS. If you write an exit routine in a high level language, and

that routine runs in the Language Environment for z/OS, you might have abends

or performance problems. Language Environment for z/OS is designed for

applications running in key 8, problem program state. BPE user exit routines

execute in key 7 supervisor state.

Related Reading: For complete information about displaying and refreshing user

exit routines, see Chapter 3, “BPE Commands,” on page 25.

BPE Initialization-Termination User-Supplied Exit Routine

The Initialization-Termination (Init-Term) exit routine is called during BPE

initialization and BPE normal termination. The Init-Term exit routine is not called

during BPE abnormal termination. This exit routine is optional.

The Init-Term exit routine is defined as TYPE = INITTERM, COMP=BPE in the

EXITDEF statement in the BPE user exit PROCLIB member pointed to by the

EXITMBR statement for the BPE exit routines. You can specify one or more user

© Copyright IBM Corp. 2002, 2006 47

|

|

|

|

exit routines of this type. When the init-term exit point is reached, the exit routines

are driven in the order they are specified by the EXITS= keyword.

Recommendation: Write the Init-Term exit routine so that it is reentrant. The

Init-Term exit routine is invoked AMODE 31.

Contents of Registers on Entry

Register Contents

1 Address of Standard BPE user exit parameter list (mapped by the

BPEUXPL macro). See “Standard BPE User Exit Parameter List” on

page 61 for more information.

13 Address of two pre-chained save areas. The first save area can be

used by the exit routine to save registers on entry. The second save

area can be used by routines that are called from the user exit

routine.

14 Return address.

15 Entry point of the exit routine.

Contents of Registers on Exit

Register Contents

15 Return code

0 Always set this to zero.

 All other registers must be restored.

BPE Initialization and Termination Parameter List

On entry to the Init-Term exit routine, R1 points to a Standard BPE user exit

parameter list. Field UXPL_EXITPLP in this list contains the address of the

Init-Term user exit routine parameter lists (mapped by the BPEITXP macro). Table 3

provides the following information about the BPE Init-Term user exit routine

parameters:

v The field name

v The offset

v The length

v The field usage

v A description of the field

 Table 3. BPE Init-Term User-Supplied Exit Routine Parameter List: BPE Initialization

Field Name Offset Length Field Usage Description

BPEITXP X'00' N/A N/A DSECT label for the BPE init-term exit parameter

list

BPEITXP_VERSION X'00' X'04' Input Parameter List Version Number (00000001)

BPEITXP_FUNC X'04' X'04' Input Function code

1 BPE Initialization (BPEITXP_FUNC_INIT)

2 BPE Termination

(BPEITXP_FUNC_TERM)

Init-Term User Exit Routine

48 Base Primitive Environment Guide and Reference

BPE Statistics User-Supplied Exit Routine

The BPE Statistics user exit routine enables you, at regular intervals, to gather

statistics related to an IMS component that is running with a BPE address space.

The exit routine is also called a final time during normal shutdown of the address

space. The BPE Statistics user exit routine is optional.

The statistics exit routine is called on a time-driven basis. The interval between

successive statistics exit routine calls is specified on the STATINTV parameter in

the BPE configuration PROCLIB member. The exit routine is first called soon after

BPE initialization completes. Subsequent calls occur every STATINTV seconds after

the previous call returns.

The BPE statistics exit routine is also called one final time during normal address

space shutdown processing. When it is called for normal shutdown, the function

code passed in the BPESTXP parameter list will be BPESTXP_FUNC_FINALSTATS

(2), indicating that this is the final statistics exit routine call.

The BPE Statistics user exit routine is defined as TYPE = STATS, COMP=BPE in the

EXITDEF statement in the BPE user exit PROCLIB member. You can specify one or

more user exit routines of this type. When this exit routine is invoked, all routines

of this type are driven in the order specified by the EXITS= keyword.

Important: All statistics passed to the BPE Statistics user exit routine are

considered Diagnosis, Modification, or Tuning Information.

Recommendation: Write the BPE Statistics exit routine so that it is reentrant. It is

invoked AMODE 31.

Contents of Registers on Entry

Register Contents

1 Address of Standard BPE user exit parameter list (mapped by the

BPEUXPL macro). See “Standard BPE User Exit Parameter List” on

page 61 for more information.

13 Address of two pre-chained save areas. The first save area can be

used by the exit routine to save registers on entry. The second save

area can be used by routines that are called from the user exit

routine.

14 Return address.

15 Entry point of the exit routine.

Contents of Registers on Exit

Register Contents

15 Return code

0 Always set this to zero.

 All other registers must be restored.

BPE Statistics Exit Routine Parameter List

On entry to the Statistics exit routine, R1 points to a Standard BPE user exit

parameter list. Field UXPL_EXITPLP in the Standard BPE user exit parameter list

Statistics User Exit Routine

Chapter 4. BPE User-Supplied Exit Routines 49

contains the address of the BPE Statistics user exit routine parameter list (mapped

by the BPESTXP macro). Table 4 provides the following information about the

Statistics user exit routine parameters:

v The field name

v The offset

v The length

v The field usage

v A description of the field

 Table 4. BPE Statistics User-Supplied Exit Routine Parameter List

Field Name Offset Length Field Usage Description

BPESTXP X'00' N/A N/A DSECT label for the BPE statistics exit

parameter list

BPESTXP_VERSION X'00' X'04' Input Parameter List Version Number (00000001)

BPESTXP_FUNC X'04' X'04' Input Function code

1 Statistics (BPESTXP_FUNC_STATS)

2 Final statistics

(BPESTXP_FUNC_FINALSTATS)

BPESTXP_BPESTATS_PTR X'08' X'04' Input Address of BPE system statistics area header.

This header points to detailed BPE system

statistics. All of the BPE statistics areas are

mapped by macro BPESSTA. See Table 5 on

page 52 for a description of the BPE system

statistics area header.

BPESTXP_COMPSTATS_PTR X'0C' X'04' Input Address of the IMS component statistics area,

or zero if none. An IMS component that runs

with BPE has the ability to define its own

statistics area, to be passed along with the

BPE statistics area when the BPE statistics exit

is called. However, not all IMS components

provide their own statistics in that manner. If

a component does not provide statistics, this

field in the BPESTXP parameter list is zero.

Refer to the IMS Version 9: Common Queue

Server Guide and Reference or the IMS Version

9: Common Service Layer Guide and Reference as

required to see if a specific IMS component

provides a statistics area and to see the

format of the area.

BPE System Statistics Area

The BPE system statistics area contains statistics on the following system resources

managed by BPE.

v TCBs

v Control block services

v AWE servers

v Storage services

The field BPESTXP_BPESTATS_PTR in the BPE statistics exit parameter list points

to this area. Figure 9 on page 51 shows the structure of the BPE system statistics

area.

Statistics User Exit Routine

50 Base Primitive Environment Guide and Reference

The BPE system statistics area begins with the BPESSTA header. The header

contains general information about the BPE address space and the IMS component

running in it. The offset table appears immediately after the header (BPESSTA +

SSTA_LENGTH). Each area for which statistics are reported is assigned a fixed slot

within this table. Each slot contains the offset to the particular area’s statistics

block from the start of the offset table. Each area may have one or more blocks for

the statistics pertaining to the area.

All “pointers” among the BPE system statistics area blocks are really offsets, not

addresses. Having offsets allows statistics to be written to a log or other data set,

where the original block addresses are no longer meaningful. All offsets are

relative to the beginning of the DSECT in which the offset field resides.

The total length of the BPE statistics area is not fixed (static). The length depends

on the resource definitions and number of active resources in the system. Many of

the area blocks contain entries for each resource type.

Recommendation: Always use the lengths passed in the area fields to refer to the

length of a particular statistics area. Do not use lengths generated as EQUs

(assembler equates) at assembly time. Using the passed lengths ensures that your

exit routine code works correctly, even if the format of the statistics areas changes

in the future.

Unless otherwise indicated, the following statements are true:

v All statistics in the various BPE statistics area topics are cumulative since the

start of the address space.

v Count fields are 32-bit unsigned numbers.

Figure 9. BPE System Statistics Area Structure

Statistics User Exit Routine

Chapter 4. BPE User-Supplied Exit Routines 51

|
|

v Time-related double-word fields are in STCK units (bit 12 = 1 microsecond).

v Statistics are gathered without serialization for performance reasons. As a result,

the statistics might not be completely consistent with each other. For example,

two related statistics might be updated at different times. View the statistics as

aggregate indications of the system performance, not as exact values.

Table 5 provides the following information about the fields in the BPE system

statistics area:

v The field name

v The offset

v The length

v The field usage

v A description of the field

 Table 5. BPE System Statistics Area

Field Name Offset Length Field Usage Description

BPESSTA X’00’ N/A N/A DSECT label for the BPE system statistics

area.

SSTA_ID X’00’ X’08’ Input Eyecatcher (“BPESSTA ”).

SSTA_LENGTH X’08’ X’04’ Input BPESSTA header section length (SSTA_END

minus BPESSTA). The offset table starts

immediately after the BPESSTA header

(BPESSTA + SSTA_LENGTH).

SSTA_VER X’0C’ X’04’ Input BPESSTA header version number within a

BPE release. The current version is

X’00000001’ (SSTA_VER_1).

SSTA_BPEVER X’10’ X’03’ Input BPE version number.

X’13’ X’01’ Input Reserved.

SSTA_OFSTTBLLEN X’14’ X’04’ Input Length of offset table.

SSTA_UTYPE X’18’ X’04’ Input IMS component type.

SSTA_UVERSION X’1C’ X’03’ Input IMS component version number.

X’1F’ X’01’ Input Reserved.

SSTA_USYSNAME X’20’ X’08’ Input IMS component system name.

SSTA_JOBNAME X’28’ X’08’ Input Jobname of address space for which this

record was created.

SSTA_STARTSTCK X’30’ X’08’ Input STCK at BPE start (STCK when BPE jobstep

TCB was created).

SSTA_STCK X’38’ X’08’ Input STCK when this record was created.

STCK_LDTO X’40’ X’08’ Input Local time-date offset from field CVTLDTO in

the CVT (the amount to add to a UTC STCK

to get local time STCK, in STCK units).

SSTA_CPUID X’48’ X’08’ Input CPU ID from STIDP instruct.

SSTA_UPRODNUM X’50’ X’08’ Input Product number (comp-ID) of IMS

component, in the form of nnnn-nnn. This

field is present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

SSTA_OSNAME X’58’ X’08’ Input Operating system name (from field

CVTSNAME in the ECVT). This field is

present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

SSTA_OSPNAME X’60’ X’10’ Input Operating system product name (from field

ECVTPNAM in the ECVT). This field is

present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

Statistics User Exit Routine

52 Base Primitive Environment Guide and Reference

Table 5. BPE System Statistics Area (continued)

Field Name Offset Length Field Usage Description

SSTA_OSPVER X’70’ X’02’ Input Operating system version, in EBCDIC (from

field ECVTPVER in the ECVT). This field is

present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

SSTA_OSPREL X’72’ X’02’ Input Operating system release, in EBCDIC (from

field ECVTPVER in the ECVT). This field is

present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

SSTA_OSPMOD X’74’ X’02’ Input Operating system modification level, in

EBCDIC (from field ECVTPREL in the ECVT).

This field is present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

SSTA_SYSCLONE X’76’ X’02’ Input SYSCLONE value (from field ECVTCLON in

the ECVT). This field is present only if the

BPE version (SSTA_BPEVER) is X’010400’ or

greater.

SSTA_TOTALLEN X’78’ X’04’ Input Total length of all statistics areas. The total

length is the number of bytes from the start of

the BPESSTA to the last byte of statistics data.

You can use this field if you are copying the

statistics data to another location (for

example, to a data set) to determine the

length of the data to copy. This field is present

only if the BPE version (SSTA_BPEVER) is

X’010400’ or greater.

X’7C’ X’04’ Input Reserved.

The BPE statistics offset table is immediately after the BPE statistics header

(BPESSTA + SSTA_LENGTH). The offset table contains offsets to the various

statistics blocks in the area.

Attention: The values in the table are offsets from the start of the offset table, not

from BPESSTA. You must use the offset table to locate the different statistics

sections to allow for changes to the lengths of these sections.

Figure 10 is an example of how to locate the dispatcher statistics area, assuming

that R2 points to the BPESSTA header:

Check offset fields for values of zero before using them. A zero offset field means

that the particular statistics block is not present in the area.

Table 6 on page 54 provides the following information about the fields in the BPE

statistics offset table:

 USING BPESSTA,R2 Address SSTA header

 LR R3,R2 Copy SSTA header addr

 AL R3,SSTA_LENGTH Add length to get ofst tble addr

 USING SSTA_OFSTTBL,R3 Address offset table

 ICM R4,15,SSTA_OFST_DISP Any dispatcher section?

 BZ NODSP No, can’t access it

 ALR R4,R3 Add ofst tbl start to get addr

 USING SSTADS,R4 Address dispatcher section

 . . .

NODSP DS OH To here if no disp sect present

Figure 10. Locating the Dispatcher Statistics Area

Statistics User Exit Routine

Chapter 4. BPE User-Supplied Exit Routines 53

|
|
|
|
|
|
|
|
|
|

v The field name

v The offset

v The length

v The field usage

v A description of the field

 Table 6. BPE Statistics Offset Table

Field Name Offset Length Field Usage Description

SSTA_OFSTTBL X’00’ N/A N/A DSECT label for the BPE statistics offset

table.

SSTA_OFST_DISP X’00’ X’04’ Input Offset to dispatcher statistics.

SSTA_OFST_CBS X’04’ X’04’ Input Offset to control block services statistics.

SSTA_OFST_AWE X’08’ X’04’ Input Offset to AWE statistics.

SSTA_OFST_STG X’0C’ X’04’ Input Offset to general storage statistics. This

field is present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

Table 7 provides the following information about the fields in the BPE dispatcher

statistics area:

v The field name

v The offset

v The length

v The field usage

v A description of the field

 Table 7. BPE Dispatcher Statistics Area

Field Name Offset Length Field Usage Description

SSTADS X’00’ N/A N/A DSECT label for BPE dispatcher statistics area.

SSTADS_ID X’00’ X’04’ Input Dispatcher section eyecatcher (“DISP”).

SSTADS_LENGTH X’04’ X’04’ Input Length of dispatcher section (includes TCB

statistics table).

SSTADS_VERSION X’08’ X’04’ Input Dispatcher statistics version number. The

current version is X’00000001’

(SSTADS_VER_1).

SSTADS_TBLOFST X’0C’ X’04’ Input Offset from SSTADS to the first TCB statistics

table entry.

SSTADS_NUMENT X’10’ X’02’ Input Number of TCB statistics table entries.

SSTADS_ENTLEN X’12’ X’02’ Input Length of each TCB statistics entry.

SSTADS_THD# X’14’ X’04’ Input Global number of thread starts.

SSTADS_DISP# X’18’ X’04’ Input Global number of dispatches.

X’1C’ X’04’ Input Reserved.

SSTADS_TREALTM X’20’ X’08’ Input Real time (wall clock time) that the BPE

address space has been running (in STCK

units). This field is present only if the BPE

version (SSTA_BPEVER) is X’010400’ or greater.

SSTADS_TBPETM X’28’ X’08’ Input Total time that all BPE-managed TCBs have

been dispatched by the BPE dispatcher (in

STCK units). This time is cumulative and

includes time for TCBs that have terminated, as

well as those that are still active. This field is

present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

Statistics User Exit Routine

54 Base Primitive Environment Guide and Reference

Table 7. BPE Dispatcher Statistics Area (continued)

Field Name Offset Length Field Usage Description

SSTADS_TCPUTM X’30’ X’08’ Input Total CPU time used by all BPE-managed TCBs

(in STCK units). This time is cumulative and

includes time for TCBs that have terminated, as

well as those that are still active. This field is

present only if the BPE version

(SSTA_BPEVER) is X’010400’ or greater.

Table 8 provides the following information about the BPE TCB statistics table entry:

v The field name

v The offset

v The length

v The field usage

v A description of the field

Each active TCB in the system has one table entry. In the case of TCB types that

support multiple TCBs, each instance of a TCB has one entry.

Important: The BPE and the IMS component running on the BPE can define a TCB

type with the same name. Use the SSTADS_F1_SYS flag to differentiate between

the TCBs in this case.

 Table 8. BPE TCB Statistics Table Entry

Field Name Offset Length Field Usage Description

SSTADS_TTE X’00’ N/A N/A DSECT label for BPE TCB statistics table

entry.

SSTADS_TYPE X’00’ X’04’ Input TCB type.

SSTADS_FLG1 X’04’ X’01’ Input DDB flag 1 (unlabeled bits are reserved by

IBM).

SSTADS_F1_POOL (X’08’)

TCB is a pool-type TCB.

SSTADS_F1_SYS (X’10’)

TCB is BPE-defined.

SSTADS_FLG2 X’05’ X’01’ Input DDB flag 2 (unlabeled bits are reserved by

IBM).

SSTADS_IDX X’06’ X’01’ Input TCB index number.

SSTADS_INUM X’07’ X’01’ Input TCB instance number.

SSTADS_BPE_TCBTKN X’08’ X’08’ Input TCB token (unique value identifying this

TCB).

SSTADS_#THDCR X’10’ X’04’ Input Number of thread creates.

SSTADS_#THDDL X’14’ X’04’ Input Number of thread deletes.

SSTADS_#THDSTART X’18’ X’04’ Input Number of thread starts.

SSTADS_#THDDISP X’1C’ X’04’ Input Number of thread dispatches.

SSTADS_#SUSP X’20’ X’04’ Input Number of suspends.

SSTADS_#SUSPBKO X’24’ X’04’ Input Number of backed-out suspends.

SSTADS_REALTIME X’28’ X’08’ Input Wall-clock time TCB has been running (in

STCK units).

SSTADS_BPETIME X’30’ X’08’ Input Time TCB has been dispatched by BPE

dispatcher (in STCK units).

SSTADS_CPUTIME X’38’ X’08’ Input CPU time for this TCB (in STCK units).

Statistics User Exit Routine

Chapter 4. BPE User-Supplied Exit Routines 55

Table 8. BPE TCB Statistics Table Entry (continued)

Field Name Offset Length Field Usage Description

Note:

v Entries in this table can remain unused if a TCB terminates after the statistics module computes the number of entries in the

table, but before all of the statistics are captured.

v The entries in this table might not be in the same order every time the statistics area is generated. You must use the 8-byte TCB

token to associate entries if you are computing entries from two different statistics exit calls.

v The number of entries in the statistics table might change from one BPE statistics user exit routine call to the next. TCBs are

dynamic and might be created and destroyed as part of normal processing. The TCB statistics table represents the TCBs currently

active at the time the statistics exit routine was called.

Table 9 provides the following information about the fields in the BPE control

block services (CBS) statistics area:

v The field name

v The offset

v The length

v The field usage

v A description of the field

The control blocks services area contains a header with global statistics and

information, followed by a table with one entry for each CBS-defined block type in

the system.

 Table 9. BPE Control Block Services Statistics Area

Field Name Offset Length Field Usage Description

SSTACB X’00’ N/A N/A DSECT label for BPE control block services

statistics area.

SSTACB_ID X’00’ X’04’ Input Control block services section eyecatcher

(“CBS”).

SSTACB_LENGTH X’04’ X’04’ Input Length of CBS section (includes block

statistics table).

SSTACB_VERSION X’08’ X’04’ Input Control block services statistics version

number. The current version is X’00000001’

(SSTACB_VER_1).

SSTACB_TBLOFST X’0C’ X’04’ Input Offset from SSTACB to first control block

statistics table entry.

SSTACB_NUMENT X’10’ X’02’ Input Number of control block statistics table

entries.

SSTACB_ENTLEN X’12’ X’02’ Input Length of each control block statistics table

entry.

Table 10 on page 57 provides the following information about the BPE control

block statistics table entry:

v The field name

v The offset

v The length

v The field usage

v A description of the field

Each control block type in the system has one table entry.

Statistics User Exit Routine

56 Base Primitive Environment Guide and Reference

Important: The BPE and the IMS component running on the BPE can define a

block type with the same name. Use the SSTACB_F1_SYS flag to differentiate

between the blocks in this case.

 Table 10. BPE Control Block Statistics Table Entry

Field Name Offset Length Field Usage Description

SSTACB_BTE X’00’ N/A N/A DSECT label for BPE control block statistics

table entry.

SSTACB_TYPE X’00’ X’04’ Input Block type.

SSTACB_FLG1 X’04’ X’01’ Input CBTE flag 1 (unlabeled bits are reserved by

IBM).

SSTACB_F1_COMP (X’20’)

Blocks are compressible.

SSTACB_F1_SYS (X’10’)

Block is a BPE block.

SSTACB_F1_FIXED (X’08’)

Block storage is page fixed.

SSTACB_FLG2 X’05’ X’01’ Input CBTE flag 2 (unlabeled bits are reserved by

IBM).

SSTACB_F2_31ONLY (X’10’)

Block is in 31-bit only storage.

SSTACB_F2_PAGE (X’02’)

Get BPAGE on 4K page boundary.

SSTACB_F2_ANY (X’01’)

Block in LOC=ANY storage.

SSTACB_IDX X’06’ X’01’ Input Block index number.

SSTACB_SP X’07’ X’01’ Input Block storage subpool.

SSTACB_#GET X’08’ X’04’ Input Number of gets for this block type.

SSTACB_CURBYTES X’0C’ X’04’ Input Current number bytes in pool.

SSTACB_MAXBYTES X’10’ X’04’ Input Maximum number bytes in pool.

SSTACB_#GETMAIN X’14’ X’04’ Input Number of GETMAINs for BPAGEs.

SSTACB_#FREEMAIN X’18’ X’04’ Input Number of FREEMAINs for BPAGEs.

SSTACB_CURBLKS X’1C’ X’04’ Input Current number blocks in pool.

Table 11 provides the following information about the BPE AWE services statistics

area:

v The field name

v The offset

v The length

v The field usage

v A description of the field

The AWE services area contains a header with global statistics and information,

followed by a table with one entry for each instance of an AWE server running in

the system.

 Table 11. BPE AWE Services Statistics Area

Field Name Offset Length Field Usage Description

SSTAAW X’00’ N/A N/A DSECT label for BPE AWE services

statistics area.

SSTAAW_ID X’00’ X’04’ Input AWE services section eyecatcher (“AWE”).

Statistics User Exit Routine

Chapter 4. BPE User-Supplied Exit Routines 57

Table 11. BPE AWE Services Statistics Area (continued)

Field Name Offset Length Field Usage Description

SSTAAW_LENGTH X’04’ X’04’ Input Length of AWE section (includes AWE

server statistics table).

SSTAAW_VERSION X’08’ X’04’ Input AWE services statistics version number. The

current version is X’00000001’

(SSTAAW_VER_1).

SSTAAW_TBLOFST X’0C’ X’04’ Input Offset from SSTAAW to first AWE statistics

table entry.

SSTAAW_NUMENT X’10’ X’02’ Input Number of AWE server statistics table

entries.

SSTAAW_ENTLEN X’12’ X’02’ Input Length of each AWE server statistics table

entry.

Table 12 provides the following information about the BPE AWE services statistics

table entry:

v The field name

v The offset

v The length

v The field usage

v A description of the field

Each active AWE server running in the system has one table entry.

Important: It is possible for BPE and the IMS component running on the BPE to

define an AWE server type with the same name. Use the SSTAAW_F1_SYS flag to

differentiate between the identically-named BPE and user-product AWE servers.

 Table 12. BPE AWE Services Statistics Table Entry

Field Name Offset Length Field Usage Description

SSTAAW_ASTE X’00’ N/A N/A DSECT label for AWE server statistics table

entry.

SSTAAW_TYPE X’00’ X’04’ Input AWE server type.

SSTAAW_SERVID X’04’ X’04’ Input Unique server ID number.

SSTAAW_FLG1 X’08’ X’01’ Input Flag 1 (AQSB_FLG1) (unlabeled bits are

reserved by IBM).

SSTAAW_F1_INIT X’80’

Server init is in progress.

SSTAAW_F1_TERM X’40’

All servers should terminate.

SSTAAW_F1_MULTI X’20’

Queue is multi-server.

Statistics User Exit Routine

58 Base Primitive Environment Guide and Reference

Table 12. BPE AWE Services Statistics Table Entry (continued)

Field Name Offset Length Field Usage Description

SSTAAW_FLG2 X’09’ X’01’ Input Flag 2 (AQHE_FLG1) (unlabeled bits are

reserved by IBM).

SSTAAW_F2_GENERIC X’80’

Generic AWE server.

SSTAAW_F2_AUTO X’40’

Server is AUTOSTARTed.

SSTAAW_F2_SYSTCB X’20’

Server runs under system TCB.

SSTAAW_F2_SYS X’10’

System (BPE) server.

SSTAAW_F2_LOC24 X’08’

Thread blks in 24-bit storage.

SSTAAW_F2_FORCEMAX X’04’

Force max threads on AUTOSTART.

SSTAAW_TCBID X’0A’ X’01’ Input ID number of owning TCB.

SSTAAW_NUMTHDS X’0B’ X’01’ Input Number of server threads for this queue

header.

SSTAAW_QHDR X’0C’ X’04’ Input Address of AWE queue header.

X’10’ X’04’ Input Reserved.

SSTAAW_TQCOUNT X’14’ X’04’ Input Number times an extra server was woken

up off of the AQSB_THREADQ

(multi-server queue headers only).

SSTAAW_NUMAWE X’18’ X’1C’ Input Number of AWEs processed off of this

queue header.

SSTAAW_NUMEQS X’1C’ X’04’ Input Number of times one or more AWEs were

dequeued from this queue header

(NUMAWE/NUMDEQS is the average

number of AWEs on the queue header).

SSTAAW_PROCTIME X’20’ X’08’ Input Cumulative time spent in processing

routine for this queue header, in STCK

units.

SSTAAW_NOWORK X’28’ X’04’ Input Number of times an AWE server was

woken up and found no work (multi-server

queue headers only).

SSTAAW_READYWAIT X’2C’ X’04’ Input Number of times an AWE server had to

wait for access to the AWE ready queue

(multi-server queue headers only).

Table 13 provides the following information about the BPE storage services

statistics area:

v The field name

v The offset

v The length

v The field usage

v A description of the field

 Table 13. BPE Storage Services Statistics Area

Field Name Offset Length Field Usage Description

SSTASG X’00’ N/A N/A DSECT label for BPE storage services

statistics area.

SSTASG_ID X’00’ X’04’ Input Storage services section eyecatcher (“STG”).

Statistics User Exit Routine

Chapter 4. BPE User-Supplied Exit Routines 59

Table 13. BPE Storage Services Statistics Area (continued)

Field Name Offset Length Field Usage Description

SSTASG_LENGTH X’04’ X’04’ Input Length of storage section.

SSTASG_VERSION X’08’ X’04’ Input Storage services statistics version number.

The current version is X’00000001’

(SSTASG_VER_1).

X’0C’ X’0C’ Input Reserved.

SSTASG_STGPVT24 X’18’ X’04’ Input Number of bytes of private storage

currently allocated in 24-bit storage by the

BPE GETMAIN service, BPEGETM. Note

that the values for the stack, control block,

and buffer pool services are included in this

number.

SSTASG_STGPVT31 X’1C’ X’04’ Input Number of bytes of private storage

allocated in 31-bit storage by the BPE

GETMAIN service, BPEGETM. Note that

the values for the stack, control block, and

buffer pool services are included in this

number.

SSTASG_STKPVT24 X’20’ X’04’ Input Number of bytes of private storage

currently allocated in 24-bit storage by the

BPE stack manager service.

SSTASG_STKPVT31 X’24’ X’04’ Input Number of bytes of private storage

currently allocated in 31-bit storage by the

BPE stack manager service.

SSTASG_CBPVT24 X’28’ X’04’ Input Number of bytes of private storage

currently allocated in 24-bit storage by the

BPE control block service.

SSTASG_CBPVT31 X’2C’ X’04’ Input Number of bytes of private storage

currently allocated in 31-bit storage by the

BPE control block service.

SSTASG_BPPVT24 X’30’ X’04’ Input Number of bytes of private storage

currently allocated in 24-bit storage by the

BPE buffer pool service.

SSTASG_BPPVT31 X’34’ X’04’ Input Number of bytes of private storage

currently allocated in 31-bit storage by the

BPE buffer pool service.

Statistics User Exit Routine

60 Base Primitive Environment Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|

Chapter 5. BPE User-Supplied Exit Routine Interfaces and

Services

This chapter describes the Base Primitive Environment (BPE) user exit routine

interfaces and services in detail.

Note: Throughout this chapter the term “user exit routine” means “user-supplied

exit routine.”

Related Reading: For information about the Base Primitive Environment’s own

user exit routines, see Chapter 4, “BPE User-Supplied Exit Routines,” on page 47.

The following topics provide additional information:

v “General BPE User-Supplied Exit Routine Interface Information”

v “BPE User-Supplied Exit Routine Callable Services” on page 66

This chapter contains Product-sensitive Programming Interface information.

General BPE User-Supplied Exit Routine Interface Information

Some IMS components (for example, CQS, OM, RM, and SCI) use BPE services to

define and manage calls to user exit routines. BPE also has its own user exit

routines (described in Chapter 4, “BPE User-Supplied Exit Routines,” on page 47).

For such exit routines, BPE gives you the ability to externally specify the user exit

routine modules to be called for a particular exit routine type using EXITDEF

statements in BPE user exit PROCLIB members. BPE also provides a common user

exit routine run time environment. The run time environment includes the

following:

v A Standard BPE user exit parameter list

v Static work areas for the routines

v Dynamic work areas for the routines

v Callable services for the routines

v A recovery environment to protect against abends in the user exit routines

Recommendation: Write BPE user exit routines in assembler, not in a high level

language. BPE does not support exit routines that run under Language

Environment for z/OS. If you write an exit routine in a high level language, and

that routine runs in the Language Environment for z/OS, you might have abends

or performance problems. Language Environment for z/OS is designed for

applications that run in key 8, problem program state. BPE user exit routines run

in key 7 supervisor state.

Related Reading: For complete information about displaying and refreshing user

exit routines, see Chapter 3, “BPE Commands,” on page 25.

Standard BPE User Exit Parameter List

All BPE-managed user exit routines receive a pointer to a Standard BPE user exit

parameter list in R1. The format of this parameter list is the same for all exit

© Copyright IBM Corp. 2002, 2006 61

|

|

|

routines, and is mapped by the BPEUXPL DSECT (in the BPEUXPL macro).

Table 14 provides the following information about the fields in the Standard BPE

user exit parameter list:

v The field name

v The offset

v The length

v The field usage

v A description of the field

 Table 14. Standard BPE User Exit Parameter List

Field Name Offset Length

Field

Usage Description

BPEUXPL X'00' N/A N/A DSECT label for Standard BPE user exit parameter list.

UXPL_VERSIONP X'00' X'04' Input Pointer to a word containing the Standard BPE user

exit parameter list version number. The current version

of the parameter list is X'00000002'. (EQU symbol

UXPL_VER2.)

UXPL_CSTOKENP X'04' X'04' Input Pointer to the BPE callable services token.

UXPL_STATICWAP X'08' X'04' Input Pointer to a 256-byte static work area. Each exit routine

module is assigned its own static work area. The

contents of the static work area are preserved from call

to call.

UXPL_DYNAMICWAP X'0C' X'04' Input Pointer to a 512-byte dynamic work area. This area is

intended as working storage for a user exit routine for

the duration of that exit routine’s run. The contents of

this area are not preserved from call to call.

UXPL_EXITPLP X'10' X'04' Input Pointer to an exit-type-specific parameter list. The

exit-type-specific parameter list contains fields that are

unique to the type of exit routine being called.

UXPL_CALLNEXTP X'14' X'04' Input Pointer to a byte of storage that the user exit routine

can use to indicate whether to call other subsequent

exit routines of the same type for the current instance

of the exit routine call.

UXPL_COMPTYPEP X'18' X'04' Input Pointer to a four-byte character string containing the

IMS component type for the address space in which the

exit routine is being called. The string is left-justified

and padded with blanks as needed to make it a

four-byte string. Possible values are:

CQS Common Queue Server

OM Operations Manager

RM Resource Manager

SCI Structured Call Interface

Important: This field is present only when the word

pointed to by UXPL_VERSIONP is equal to the value

of UXPL_VER2 or greater.

General Interface Info

62 Base Primitive Environment Guide and Reference

Table 14. Standard BPE User Exit Parameter List (continued)

Field Name Offset Length

Field

Usage Description

UXPL_COMPVERP X'1C' X'04' Input Pointer to a three-byte field in storage containing the

version number of the IMS component for the address

space in which the exit routine is being called. The

version number is of the form vvrrpp, where:

vv Component version number.

rr Component release number.

pp Component point release number.

For example, if the address space type were CQS in

IMS Version 9, UXPL_COMPVERP points to X'010400'.

Important: This field is present only when the word

pointed to by UXPL_VERSIONP is equal to the value

of UXPL_VER2 or greater.

UXPL_BPEVERP X'20' X'04' Input Pointer to a three-byte field in storage containing the

BPE version number for the address space in which the

exit routine is being called. The version number is of

the form vvrrpp, where:

vv BPE version number.

rr BPE release number.

pp BPE point release number.

For example, if the address space type were BPE in

IMS Version 9, UXPL_BPEVERP points to X'010500'.

Important: This field is present only when the word

pointed to by UXPL_VERSIONP is equal to the value

of UXPL_VER2 or greater.

UXPL_SYSIDP X'24' X'04' Input Pointer to an 8-character system ID. The system ID is a

character ID string that may be used by the IMS

component using BPE services (for example, the CQS

ID that is derived from the CQS SSN= startup

parameter). If the IMS component has not provided a

system ID to BPE, then the field pointed to by this

pointer will be all blanks. If the system ID is shorter

than eight characters, it is padded on the right with

blanks to make it eight characters.

Important: This field is present only when the word

pointed to by UXPL_VERSIONP is equal to the value

of UXPL_VER2 or greater.

Work Areas Provided by BPE

Each user exit routine is passed two work areas by BPE every time the exit routine

is called. The two work areas are:

v The static work area

v The dynamic work area

The Static Work Area

The static work area is pointed to by field UXPL_STATICWAP in the Standard BPE

user exit parameter list. The static work area is 256 bytes in length. Each user exit

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 63

|
|

|
|
|

|
|

routine is assigned its own static work area that is not shared between exit routines

of the same type. The same work area is passed every time a particular user exit

routine is called, and the contents of the work area are preserved from call to call.

A user exit routine can use the static work area to save data between calls to the

exit routine. The static work area is cleared (set to zeros) the first time a user exit

routine is invoked.

When a user exit routine is refreshed with the REFRESH USEREXIT command, the

same static work area continues to be passed to the new copy of the module that

was being passed to the old copy. If a user exit routine is removed from an

EXITDEF list and a REFRESH USEREXIT command is issued, the static work area

for the module is deleted. If the exit module is then later added back to the

EXITDEF list and another REFRESH USEREXIT command is issued, the exit

routine gets a new (cleared) static work area. For more information about handling

the static work area across REFRESH USEREXIT commands, see “Considerations

for Refreshing User Exits” on page 45.

The Dynamic Work Area

The dynamic work area is pointed to by field UXPL_DYNAMICWAP in the

Standard BPE user exit parameter list. The dynamic work area is 512 bytes in

length. The dynamic work area is used as working storage by a user exit routine

for the current call only. The dynamic storage area’s address might not be the

same, nor are its contents preserved from call to call. The dynamic work area is not

cleared when a user exit routine receives control; therefore, the work area might

contain residual data.

Calling Subsequent Exit Routines in BPE

Each user exit routine type can have multiple exit routine modules associated with

it. BPE calls each module in the order that it was specified on the EXITS=

parameter of the EXITDEF= statement. The EXITDEF= statement of the BPE user

exit PROCLIB member defines the list of exit routines.

Each user exit routine can decide whether subsequent exit routines in the list that

are to be called upon return to BPE. For example, a list of exit routines are called

to make a decision about processing for a particular resource. If exit routine ABC

cannot make the decision, it can return an indication that the next exit routine in

the list, routine DEF, is to be called so that it can try to make the decision. If exit

routine ABC is able to make the decision, it can return an indication that the next

exit routine in the list, routine DEF, need not be called because the decision has

already been reached.

Field UXPL_CALLNEXTP in the Standard BPE user exit parameter list is a pointer

to a byte in storage that the user exit routine can use to indicate whether to call the

next exit routine in the list. If the exit routine does not set this byte, the default is

to call the next exit routine in the list. If the exit routine sets this byte, it must set it

to one of the following values, defined by EQUs in the BPEUXPL macro:

UXPL_CALLNEXTYES Call the next exit routine in the list.

UXPL_CALLNEXTNO Do not call the next exit routine in the list.

Attention: Only UXPL_CALLNEXTYES and UXPL_CALLNEXTNO are defined

values for this byte. Results are unpredictable if a user exit routine sets this byte to

any value other than those listed here.

General Interface Info

64 Base Primitive Environment Guide and Reference

BPE User-Supplied Exit Routine Environment

All user exit routines are given control in the following environment unless

otherwise stated:

Authorization Supervisor state, PSW key 7

Dispatchable unit mode TCB

Cross-memory mode None (PASN=HASN=SASN)

AMODE 31

ASC mode Primary

Interrupt Status Enabled

Locks None

All user exit routines receive control with the following registers set:

Register Contents

R1 Pointer to Standard BPE user exit parameter list.

R13 Pointer to the first of two pre-chained save areas. The user exit

routine can use the first save area to save the registers of its caller,

and can use the second save area for lower-level calls that it

makes. The save areas are chained together using standard z/OS

save area linkage conventions.

R14 Return address.

R15 Entry point of exit routine.

Attention: Control must be returned to the return address passed to the user exit

routine in R14. R15 can be set to a return code if appropriate for the specific exit

routine type being called. Ensure that all other registers are restored to the values

they had when the exit routine was called.

The contents of the registers not listed here are unknown and unpredictable.

Ensure that your user exit routines do not modify any fields in any parameter list

that are not explicitly documented as output fields. The results of modifying

non-output fields are unpredictable.

Write your user exit routines so that they are reentrant. User exit routines in the

same EXITS= list are called serially within one occurrence of a call for that exit

routine type. However, it is possible for a user exit routine to be entered

simultaneously for different occurrences of a call, under different TCBs, for the

same exit routine type.

An exit routine receives the same static work area, but receives another dynamic

work area for each call when it is entered simultaneously. Be careful when

updating fields in the static work area. They might be in the process of being

changed by other instances of your exit routine module that are running in

parallel.

BPE User Exit Routine Performance Considerations

Some user exit routines might be called from mainline processing code. The

amount and type of processing that is done by those exit routines can directly

contribute to the total path length and time required to complete a unit of work.

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 65

Recommendation: Code user-supplied exit routines in ways that minimize path

length and processing time as much as possible.

Operating system WAITs, SVCs, and I/O can all contribute to poor performance

and should be used sparingly. When a BPE callable service exists, it is

recommended that you use it, rather than the operating system equivalent, because

the callable service is usually optimized to perform more efficiently in a BPE

sub-dispatching environment.

Recommendation: Code your user exit routines in assembler language for the best

performance. If you write exit routines in other languages, you might have

performance problems. BPE does not support exit routines that run under

Language Environment for z/OS.

Abends in BPE User-Supplied Exit Routines

BPE establishes a recovery environment before it calls user exit routines. In most

cases, BPE recovers from any abends that occur while a user exit routine is in

control, and calls the next exit routine in the list, if any is indicated. When a user

exit routine abends, BPE ignores any value that the abending exit routine may

have set in the byte pointed to by UXPL_CALLNEXTP. BPE resets this byte to

UXPL_CALLNEXTYES and then calls the next exit routine in the list.

BPE keeps a count of the number of abends that have occurred in each user exit

routine module. The first time an abend occurs in a module, BPE issues a request

to create an SDUMP to capture diagnostic information about the abend. BPE also

creates a SYS1.LOGREC entry for the abend and issues the message, BPE0019E,

indicating which exit routine module had control when the abend occurred. For

subsequent abends in an exit routine module, BPE creates a SYS1.LOGREC entry

and issues the message, BPE0019E, but does not issue the request to create an

SDUMP.

When the number of abends indicated by the ABLIM= parameter has been

reached, BPE stops calling the abending exit routine module. The ABLIM=

parameter is specified as part of the EXITDEF= statement for that type of exit

routine. The default value for ABLIM= is 1 (to stop calling the exit routine after the

first abend). You can change this value as required. The abend count for an exit

routine is reset to zero if the exit routine type is refreshed (see “Refreshing User

Exits in BPE” on page 44 for more information).

Related Reading: For more information on the ABLIM parameter, refer to “BPE

USEREXIT Commands” on page 36.

BPE User-Supplied Exit Routine Callable Services

A set of callable services is provided that can be used by BPE-managed user exit

routines to request certain functions from BPE. Callable services are requested by

using the BPEUXCSV macro.

Recommendation: Choose the BPE service when there is a choice between using

an operating system service or an equivalent BPE callable service. All callable

services are Product-Sensitive Programming Interfaces (PSPIs).

BPEUXCSV Macro Description

The purpose of the BPEUXCSV macro is to issue BPE callable service requests from

a user exit routine called from a BPE environment. You can use this macro only for

General Interface Info

66 Base Primitive Environment Guide and Reference

BPE-called exit routines (exit routines that are passed the address of a Standard

BPE user exit parameter list in R1). BPE provides callable services that include the

following functions:

v Get and free storage associated with the primary BPE TCB (usually jobstep).

Some user exit routines can run under a different TCB each time they are called.

Normally, storage obtained with GETMAIN is associated with the current TCB.

If an exit routine obtained storage when it was called under one TCB and tried

to free it when running under a different TCB, the storage free attempt may fail.

The get storage and free storage callable services allow exit routines to get an

area of storage when running under one TCB and to free it when running under

a different TCB.

v Load and delete modules and associate these modules with the primary BPE

TCB. Like the storage get and free services, the load and delete services handle

module management when loaded and deleted from different TCBs.

v Get, retrieve, and free named storage areas. A named storage area is an area of

storage that is associated with a 16-byte name. The address of the storage area

can be retrieved given the name of the area. This allows different user exit

routines to communicate with one another by using a common name for a

shared named storage area.

When a callable service is invoked, the service may have to wait for the

completion of some event. Depending on the environment at the time your user

exit routine is called, such a wait can be either an OS WAIT (that is, the current

TCB is suspended until the event completes) or a BPE-internal wait. For

BPE-internal waits, BPE can run other ready work under the current TCB while

your user exit routine is waiting for the event to complete. When the event does

complete, BPE re-dispatches your exit routine’s unit of work and completes the

callable service request.

The possibility of waiting introduces the following situations, which your exit

routine must be able to manage.

v Depending on the nature of the specific user exit routine (where and when it is

called), your exit routine might be entered again for another exit routine call

while the first instance of the exit routine is still waiting in a callable services

request. Note that multiple concurrent calls to user exit routines are, in general,

always possible. However, some user exit routines might normally be

TCB-serialized (that is, their callers always run under a single TCB); these

TCB-serialized routines might be entered multiple times when you use a callable

service.

v Again, depending on the specific user exit routine, your exit routine might have

control passed back from the BPE callable service request running under a

different TCB than when it was originally called. This is because BPE provides

the ability for a program that is using BPE services (such as CQS) to define a

pool of TCBs. In this situation any TCB in the pool can run any unit of work

that is assigned to the pool. So, your exit routine might be running under one

TCB in a pool, make a callable services request, wait, and then be dispatched

under a different TCB after the event completes.

BPEUXCSV Environmental Requirements

The requirements for the caller of BPEUXCSV are:

Authorization Supervisor state, PSW key in which the user exit

routine was originally called.

Dispatchable unit mode TCB mode.

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 67

Save area R13 must be pointing to a standard 72-byte save

area.

Cross-memory mode None (PASN=HASN=SASN).

AMODE 31-bit.

ASC mode Primary.

Interrupt Status Enabled.

Locks None.

BPEUXCSV Restrictions and Limitations

BPEUXCSV can be invoked only from within a BPE-called user exit routine.

BPEUXCSV is a Product-Sensitive Programming Interface.

BPEUXCSV Register Information

This macro uses R0, R1, R14, and R15 as work registers. When BPEUXCSV returns

control to the caller, the contents of these registers will be changed. All other

registers remain unchanged.

BPEUXCSV Performance Implications

None.

Other Macro Requirements

None.

BPEUXCSV Macro Syntax

FUNC = CALL: The FUNC = CALL function is used to invoke a callable service

from a user exit routine. Figure 11 is the syntax for the CALL function.

FUNC = DSECT: The FUNC = DSECT function is used to generate all of the

following items:

v Return code symbols

v BPE callable service codes

v Parameter list DSECT for the BPEUXCSV CALL function

Figure 12 is the syntax for the DSECT function.

��

BPEUXCSV

label

 FUNC=CALL

�

,

PARMS=(

symbol

)

number

(r2-r12)

�

� SERVICECODE= symbol

(r2-r12)
 SL= symbol

(r0-r12,r14,r15)
 TOKEN= symbol

(r2-r12)
 ��

Figure 11. Syntax for BPEUXCSV Macro CALL Function

�� BPEUXCSV FUNC=DSECT ��

Figure 12. Syntax for BPEUXCSV Macro DSECT Function

General Interface Info

68 Base Primitive Environment Guide and Reference

Parameter Descriptions:

label An optional assembler label for the macro statement.

FUNC=CALL | DSECT

An optional parameter that specifies the function of the BPEUXCSV macro.

The default is CALL.

CALL Invokes a BPE callable service from a user exit routine.

DSECT Generates the return code symbols, BPE callable service

codes, and the parameter list DSECT for the BPEUXCSV

CALL function.

PARMS=(list_of_parameters)

A required parameter that specifies a list of subparameters (separated by

commas) that are needed for the requested callable service. These

subparameters are positional, and are specific to the service requested.

Subparameters in this list may be in one of the following three forms.

symbol If coded as a symbol, the value of the symbol (for example,

the result of doing an LA R0,symbol) is passed as the

parameter.

number If coded as a number, the number is passed as the

parameter.

(register) If coded as a register, the content of the register is passed

as the parameter. Valid registers are R2 through R12.

Examples:

v If a parameter is described as “A word in storage to receive a pointer to

the returned storage,” you could use one of the following coding

examples.

v If a parameter is described as “The number of bytes of storage to

obtain,” you could use one of the following coding examples.

 BPEUXCSV PARMS=(MYWORD),...

 . . .

 MYWORD DS A Word to receive returned ptr

 - or -

 LA 2,MYWORD Get addr of word to receive ptr

 BPEUXCSV PARMS=((2)),...

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 69

The specific parameters and parameter order for each service are described

in SERVICECODE=.

SERVICECODE=symbol | (r2-r12)

A required parameter that specifies a code that identifies the particular

callable service that is being requested.

 If SERVICECODE is specified as a symbol, the symbol must be an EQU

symbol that is equated to the function code of the requested callable

service. If SERVICECODE is specified as a register, the register must

contain the service code. For BPE-provided services, the appropriate EQU

symbols are generated when you invoke BPEUXCSV FUNC = DSECT, and

are specified as one of the following service codes.

BPEUXCSV_GETSTG Get storage service.

BPEUXCSV_FREESTG Free storage service.

BPEUXCSV_LOAD Load module service.

BPEUXCSV_DELETE Delete module service.

BPEUXCSV_NSCREATE Create named storage service.

BPEUXCSV_NSRETRIEVE Retrieve named storage service.

BPEUXCSV_NSDESTROY Destroy named storage service.

SL=symbol | (r0-r12,r14,r15)

A required parameter that specifies an area in storage that is to be used as

a service parameter list. The BPEUXCSV macro uses this storage to build

the parameter list for the call to the callable service. The EQU symbol

BPEUXCSV_MAXSL is generated by this macro and is equated to the size

of the largest service parameter list required by BPE callable services.

Ensure that area of storage you specify on the SL parameter is at least

BPEUXCSV_MAXSL bytes in length when requesting any of the BPE

callable services.

 If SL is specified as a symbol, the symbol must be a label on the first byte

of the area to be used as the service parameter list. If the SL parameter is

specified as a register, the register must contain the address of the first byte

of the area.

TOKEN=symbol | (r2-r12)

A required parameter that specifies the callable services token address that

was passed to the user exit routine in the Standard BPE user exit

parameter list field UXPL_CSTOKENP. If the TOKEN parameter is

specified as a symbol, the symbol must be the label on a word of storage

 BPEUXCSV PARMS=(NUMBYTES),...

 . . .

 NUMBYTES EQU 1024 Number of bytes to get

 - or -

 BPEUXCSV PARMS=(1024),...

 - or -

 LA 5,1024

 BPEUXCSV PARMS=((5)),...

General Interface Info

70 Base Primitive Environment Guide and Reference

that contains the callable services token address. If TOKEN is specified as a

register, the register must contain the callable services token address.

Return from BPEUXCSV

BPEUXCSV FUNC = CALL uses general purpose registers R0, R1, R14, and R15 as

work registers. On exit from the macro, R15 is set to the return code from the

BPEUXCSV macro. This return code indicates the status from the callable service

request router. The possible return code values in R15 are the same for all callable

service requests. R0 might be set to a return code for the specific callable service

that was requested, depending on the value that is in R15 (see R15 return codes in

Table 15). The R0 return code is specific to each callable service. R1 might be set to

a return value from the callable service, if applicable. See the specific service

descriptions for additional information. R2 through R12 are unchanged on return

from BPEUXCSV.

EQUs for the return codes in R15 are generated by BPEUXCSV FUNC = DSECT.

Table 15 describes the possible return code values in R15 for FUNC = CALL,

including the symbol, its value, and a description.

 Table 15. FUNC=CALL Return Codes

Symbol Value Description

BPEUXCSV_RC_OK X'00' The callable service was successful.

BPEUXCSV_RC_SERV X'04' The specific callable service returned a

non-zero return code. The return code is in

the R0. Examine R0 to determine the specific

reason that the request failed. The only time

that the value in R0 is valid is when

R15=X'04'. Otherwise, the content of R0 is

unpredictable.

BPEUXCSV_RC_INVCODE X'08' The service code specified on SERVICECODE

is invalid.

BPEUXCSV_RC_BADTOKEN X'0C' The callable service token passed on TOKEN

is invalid.

BPEUXCSV_RC_INT X'F4' An internal BPE error occurred.

BPEUXCSV_RC_VERS X'FC' A callable services parameter list version error

was encountered. The version of the

parameter list generated by this macro is not

valid for your current release of BPE. This is

usually the result of assembling with a

version of BPEUXCSV at a different level than

the BPE runtime system.

BPEUXCSV Get Storage Service

The get storage service is used to obtain virtual storage. It is similar to the z/OS

GETMAIN and STORAGE services; however, the storage obtained by the get

storage service is always associated with the top-level BPE TCB (usually the

jobstep TCB of the address space). The storage remains allocated until it is

explicitly freed or until the jobstep TCB terminates. Therefore, you can rely on the

fact that the storage stays allocated even if it is obtained under a subtask TCB

which later terminates.

Service Code: BPEUXCSV_GETSTG

PARMS format:

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 71

PARMS=(length,sp,opts) or PARMS=(length,sp,opts,key)

 The following are descriptions of the parameters.

length The length of the requested storage, in bytes.

sp The subpool of the requested storage. This must be a valid

private subpool. It cannot be a common storage subpool

(such as subpool 231 or 241).

opts Options for the storage request. opts is a value that is the

sum of several EQU values. opts identifies the options you

have requested for the get storage service request. A

BPEUXCSV FUNC = DSECT statement must be included in

your module to generate the EQUs required for this

function. To specify that none of the options apply, code a

zero (0) for opts.

BPEUXCSV_GETSTG_BELOW

Include this EQU if you want LOC = BELOW

(below the line) storage. If this EQU is omitted, the

storage is LOC = ANY.

BPEUXCSV_GETSTG_CLEAR

Include this EQU if you want the storage to be

cleared when it is returned to you. If this EQU is

omitted, the storage content is unpredictable.

BPEUXCSV_GETSTG_PAGE

Include this EQU if you want the starting address

of the obtained storage to be aligned on a page

boundary. If this EQU is omitted, the storage is

aligned on a double-word boundary.

key The storage key of the restricted storage. key is an optional

parameter. If coded, it indicates the storage key to be

assigned to the storage returned from the get storage

service. If key is omitted, the returned storage will be key 7

storage.

 The value passed for the key parameter must be sixteen

times the actual key value. For example, if you wanted to

get key 2 storage, you would specify a value of X'20' for

the key parameter.

 Note: The key parameter applies only to subpools where

KEY= applies on the z/OS GETMAIN macro (for example,

subpool 229). It is ignored for all other subpools. You

cannot, for example, request subpool 0 storage in a key

other than 7.

Output: Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 =

0, the address of the obtained storage area is returned in R1. Otherwise, the

content of R1 is unpredictable.

If R15 = 4 on return from this macro, R0 contains the reason code; Table 16 on page

73 lists these return codes, including the symbol, its value, and a description.

General Interface Info

72 Base Primitive Environment Guide and Reference

Table 16. Get Storage Service Return Codes

Symbol Value Description

BPEUXCSV_GETSTG_RCSP X'04' An invalid or unsupported subpool

was specified. Either the subpool is

not supported by z/OS, or it is a

common subpool.

BPEUXCSV_GETSTG_RCLV X'08' A zero or negative storage length

was specified.

A zero storage address was

specified.

BPEUXCSV_GETSTG_RCSTG X'0C' The storage was unable to free the

requested storage.

BPEUXCSV_GETSTG_RCPARM X'F0' An invalid number of parameters

was passed to the callable services

request.

BPEUXCSV_GETSTG_RCINT X'F4' An internal BPE error occurred.

Examples:

v This next example shows how to get 64 bytes of storage from subpool 0. The

storage is LOC = BELOW, it is aligned on a page boundary, and it is not cleared.

v The following example shows how to get key zero storage for a length of the

value in R2, from the subpool value in R3. The storage is LOC = ANY, it is not

cleared, and it is double-word aligned. R4 contains the callable services token

address that was passed to the user exit routine in the field UXPL_CSTOKENP.

BPEUXCSV Free Storage Service

The free storage service is used to release storage that was previously obtained

with the get storage service. It is similar to the z/OS FREEMAIN service. The free

storage service must be used only to release storage obtained with the get storage

service. It should not be used to release storage that was obtained using any other

method (such as GETMAIN).

Service Code: BPEUXCSV_FREESTG

PARMS format:

PARMS=(address,length,sp) or PARMS=(address,length,sp,key)

address

The address of the first byte of storage being released.

length

The number of bytes of the storage being released.

 BPEUXCSV SERVICECODE=BPEUXCSV_GETSTG, X

 PARMS=(64,0,BPEUXCSV_GETSTG_BELOW+BPEUXCSV_GETSTG_PAGE),X

 TOKEN=UXPL_CSTOKENP, X

 SL=(1)

 BPEUXCSV SERVICECODE=BPEUXCSV_GETSTG, X

 PARMS=((2),(3),0, 0), X

 TOKEN=(4), X

 SL=WORKAREA

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 73

sp The subpool of the storage being released. This subpool must be the

same as the subpool that was specified when the storage was obtained.

key

The storage key of the storage being released. key is the optional

parameter. If coded, it indicates the storage key of the storage being

freed. If key is omitted, the storage must be key 7 storage.

 The value passed for the key parameter must be sixteen times the

actual key value. For example, if you were freeing key 2 storage, you

would specify a value of X'20' for the key parameter.

 Note: The key parameter only applies to subpools where KEY= applies

on the z/OS FREEMAIN macro (for example, subpool 229). It is

ignored for all other subpools.

Output: Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 =

4 on return from this macro, R0 contains the reason code; Table 17 lists the reason

codes, including the symbol, its value, and a description.

 Table 17. Free Storage Service Return Codes

Symbol Value Description

BPEUXCSV_FREESTG_RCSP X'04' An invalid or unsupported

subpool was specified. Either

the subpool is not supported

by z/OS, or it is a common

subpool.

BPEUXCSV_FREESTG_RCLV X'08' A zero or negative storage

length was specified.

BPEUXCSV_FREESTG_RCADDR X'0C' A zero storage address was

specified.

BPEUXCSV_FREESTG_RCSTG X'10' The service was unable to free

the requested storage.

BPEUXCSV_FREESTG_RCPARM X'F0' An invalid number of

parameters was passed to the

callable services request.

Example:

This example shows how to free STGLEN bytes starting at the byte at label

MYSTG in subpool 129. STGLEN is an EQU for the number of bytes to free, and

MYSTG is the label on the first byte of the area to free (not the label on a word

pointing to the area).

BPEUXCSV Load Module Service

The Load Module Service is used to load a module from a library into storage. It is

similar to the z/OS LOAD service; however, the module that is loaded is always

associated with the top level BPE-TCB (usually the jobstep TCB of the address

space). The module remains allocated until it is explicitly freed or until the jobstep

TCB terminates. Therefore, you can rely on the module remaining allocated, even if

it is obtained under a subtask TCB that later terminates.

 BPEUXCSV SERVICECODE=BPEUXCSV_FREESTG, X

 PARMS=(MYSTG,STGLEN,129), X

 TOKEN=UXPL_CSTOKENP, X

 SL=(1)

General Interface Info

74 Base Primitive Environment Guide and Reference

Service Code: BPEUXCSV_LOAD

PARMS format:

PARMS=(modname,dcb,opts)

modname

Identifies an eight-character field in storage containing the name of the module

to be loaded. If modname is coded as a symbol, the symbol must be the label on

the first byte of the eight-character field. If modname is coded as a register, the

register must contain the address of the eight-character field.

dcb

The address of an opened DCB for a partitioned data set from which to load

the specified module. To use the TASKLIB, STEPLIB, or JOBLIB data sets, code

0 for this parameter.

opts

Options for the load request. opts is a value that is the sum of several EQU

values. opts identifies the options you have requested for the Load Module

Service request. A BPEUXCSV FUNC = DSECT statement must be included in

your module to generate the EQUs required for this function. To specify that

none of the options apply, code 0 for opts.

BPEUXCSV_LOAD_FIXED Include this EQU if you want the module to be

loaded into page-fixed storage. If this EQU is

omitted, the module is loaded into pageable

storage. This parameter applies only if you also

specify BPEUXCSV_LOAD_GLOBAL.

Otherwise, BPEUXCSV_LOAD_FIXED is

ignored.

BPEUXCSV_LOAD_GLOBAL Include this EQU if you want the module to be

loaded into global (common) storage. If this

EQU is omitted, it is loaded into private

storage.

BPEUXCSV_LOAD_EOM Include this EQU if you specified

BPEUXCSV_LOAD_GLOBAL and you want

the module to be deleted only after the address

space terminates. If this EQU is omitted, the

module is deleted when the top-level BPE TCB

terminates. BPEUXCSV_LOAD_EOM is

ignored if you did not code

BPEUXCSV_LOAD_GLOBAL.

Output: If R15 = 0, the address of the loaded module is returned in R1. Otherwise,

the content of R1 is unpredictable.

Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 = 4 on

return from this macro, then R0 contains the reason code; Table 18 lists the reason

codes, including the symbol, its value, and a description.

 Table 18. Load Module Service Return Codes

Symbol Value Description

BPEUXCSV_LOAD_RCNOTFND X'04' The specified module

could not be found.

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 75

Table 18. Load Module Service Return Codes (continued)

Symbol Value Description

BPEUXCSV_LOAD_RCBLDL X'08' BLDL for the module

failed due to an internal

error.

BPEUXCSV_LOAD_RCLOAD X'0C' LOAD for the module

failed. The module was

found in the library, but

LOAD returned a

non-zero code.

BPEUXCSV_LOAD_RCPARM X'F0' An invalid number of

parameters was passed

to callable services

request.

BPEUXCSV_LOAD_RCINT X'F4' An internal BPE error

occurred.

Examples:

The following example shows how to load the module whose name is at the 8

bytes of storage, beginning at label MODNAME, from the default TASKLIB,

JOBLIB, or STEPLIB data sets.

 This next example shows how to load the module, whose name is at the 8 bytes of

storage pointed to by R8, into global storage. The module is not deleted until the

address space terminates (or until it is explicitly deleted). R2 contains the callable

services token address that was passed to the user exit routine in the

UXPL_CSTOKENP field. The module is loaded from the dataset described by DCB

MYDCB.

BPEUXCSV Delete Module Service

The delete module service is used to delete a module that was previously loaded

with the load module service. It is similar to the z/OS DELETE service. The delete

module service must be used only to delete modules obtained with the load

module service. It must not be used to delete modules that were loaded using any

other method (such as z/OS LOAD).

 BPEUXCSV SERVICECODE=BPEUXCSV_LOAD, X

 PARMS=(MODNAME,0,0), X

 TOKEN=UXPL_CSTOKENP, X

 SL=(1)

 . . .

 MODNAME DC CL8’MODULE00’ Name of module to load

 LA 8,MODNAME R8 = addr of name of module to load

 BPEUXCSV SERVICECODE=BPEUXCSV_LOAD, X

 PARMS=((8),MYDCB,BPEUXCSV_LOAD_GLOBAL+BPEUXCSV_LOAD_EOM)X

 TOKEN=(2), X

 SL=PRMLIST

 . . .

 MODNAME DC CL8’MODULE00’ Name of module to load

 MYDCB DCB DSNAME=...

General Interface Info

76 Base Primitive Environment Guide and Reference

Service Code: BPEUXCSV_DELETE

PARMS format:

PARMS=(modname)

modname

Identifies an eight character field in storage containing the name of the module

to be deleted. If modname is coded as a symbol, the symbol must be the label

on the first byte of the eight character field. If modname is coded as a register,

the register must contain the address of the eight character field.

Output: Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 =

4 on return from this macro, then R0 the reason code; Table 19 lists these reason

codes, including the symbol, its value, and a description.

 Table 19. Delete Module Service Return Codes

Symbol Value Description

BPEUXCSV_DELETE_RCDELETE X'04' The module that was

specified could not be deleted.

BPEUXCSV_DELETE_RCPARM X'F0' An invalid number of

parameters was passed to the

callable services request.

BPEUXCSV_DELETE_RCINT X'F4' An internal BPE error

occurred.

Example:

The following example shows how to delete the module whose eight character

name is in the storage pointed to by R5.

BPEUXCSV Create Named Storage Service

The create named storage service allows you to obtain an area of storage that is

associated with a 16-byte name. In subsequent user exit routine calls (either for the

same or different exit routine types), you can retrieve the named storage area

address by providing the same name to the retrieve named storage service. Named

storage services allow a set of user exit routines to share information but only if

they agree on the same name. Typically, an initialization-type exit routine creates

the named storage, and all subsequent exit routines retrieve the named storage

address.

The name of the storage must be unique within the BPE address space. The named

storage is obtained in subpool 0, LOC = ANY storage. The storage is cleared to

zeros when it is created.

Service Code: BPEUXCSV_NSCREATE

 LA 5,MODNAME R5=addr of name of module to delete

 BPEUXCSV SERVICECODE=BPEUXCSV_DELETE, X

 PARMS=((5)), X

 TOKEN=UXPL_CSTOKENP, X

 SL=(1)

 . . .

 MODNAME DC CL8’MODULE00’ Name of module to delete

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 77

PARMS format:

PARMS=(name,length)

name

Identifies a 16-byte field in storage containing the name to be associated with

the storage obtained. The field can contain any 16-byte value (all bytes are

significant). If name is coded as a symbol, the symbol must be the label on the

first byte of the 16-byte field. If name is coded as a register, the register must

contain the address of the 16-byte field.

length

The number of bytes of the named storage area to obtain.

Output: If R15 = 0, the address of the named storage area obtained is returned in

R1. Otherwise, the content of R1 is unpredictable.

Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 = 4 on

return from this macro, R0 contains the reason code; Table 20 lists these reason

codes, including the symbol, its value, and a description.

 Table 20. Create Named Storage Service Return Codes

Symbol Value Description

BPEUXCSV_NSCREATE_RCDUP X'04' The requested storage area

name is already in use.

BPEUXCSV_NSCREATE_RCLV X'08' A zero or negative storage

length was requested.

BPEUXCSV_NSCREATE_RCNAME X'0C' A zero name address was

specified.

BPEUXCSV_NSCREATE_RCSTG X'10' The service was unable to

obtain the requested storage.

BPEUXCSV_NSCREATE_RCPARM X'F0' An invalid number of

parameters was passed to the

callable services request.

BPEUXCSV_NSCREATE_RCINT X'F4' An internal BPE error

occurred.

Example:

This example shows how to create a 1024-byte storage area that is associated with

the 16-byte name in storage. The first byte of the named storage area is at label

MYNAME.

BPEUXCSV Retrieve Named Storage Service

The retrieve named storage service allows you to retrieve the address of a named

area of storage that was previously created with the create named storage service.

Service Code: BPEUXCSV_NSRETRIEVE

 BPEUXCSV SERVICECODE=BPEUXCSV_NSCREATE, X

 PARMS=(MYNAME,1024), X

 TOKEN=UXPL_CSTOKENP, X

 SL=(1)

 . . .

 MYNAME DC CL16’SHARED_STOR_1024’ "Name" of named storage

General Interface Info

78 Base Primitive Environment Guide and Reference

PARMS format:

PARMS=(name)

name

Identifies a 16-byte field in storage containing the name of the named storage

area. The field can contain any 16-byte value (all bytes are significant). If name

is coded as a symbol, the symbol must be the label on the first byte of the

16-byte field. If name is coded as a register, the register must contain the

address of the 16-byte field.

Output: If R15 = 0, the address of the named storage area retrieved is returned in

R1. Otherwise, the content of R1 is unpredictable.

Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 = 4 on

return from this macro, R0 contains the reason code; Table 21 lists these reason

codes, including the symbol, its value, and a description.

 Table 21. Retrieve Named Storage Service Return Codes

Symbol Value Description

BPEUXCSV_NSRETRIEVE_RCNONE X'04' No named storage area is

associated with the specified

name.

BPEUXCSV_NSRETRIEVE_RCNAME X'08' A zero name address was

specified.

BPEUXCSV_NSRETRIEVE_RCPARM X'F0' An invalid number of

parameters was passed to

the callable services request.

BPEUXCSV_NSRETRIEVE_RCINT X'F4' An internal BPE error

occurred.

Example:

This example shows how to retrieve the address of the named storage area

associated with the 16-byte name in storage at the address contained in R6.

BPEUXCSV Destroy Named Storage Service

The destroy named storage service is used to delete a previously created named

storage area. No other user exit routine should access this storage after you destroy

it.

Service Code: BPEUXCSV_NSDESTROY

PARMS format:

PARMS=(name)

name

Identifies a 16-byte field in storage containing the name of the named storage

 LA 6,MYNAME

 BPEUXCSV SERVICECODE=BPEUXCSV_NSRETRIEVE, X

 PARMS=((6)), X

 TOKEN=UXPL_CSTOKENP, X

 SL=(1)

 . . .

 MYNAME DC CL16’SHARED_STOR_1024’ "Name" of named storage

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 79

area. The field can contain any 16-byte value (all bytes are significant). If name

is coded as a symbol, the symbol must be the label on the first byte of the

16-byte field. If name is coded as a register, the register must contain the

address of the 16-byte field.

Output: Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 =

4 on return from this macro, R0 contains the reason code; Table 22 lists these

reason codes, including the symbol, its value, and a description.

 Table 22. Destroy Named Storage Service Return Codes

Symbol Value Description

BPEUXCSV_NSDESTROY_RCNONE X'04' No named storage area is

associated with the specified

name.

BPEUXCSV_NSDESTROY_RCNAME X'08' A zero name address was

specified.

BPEUXCSV_NSDESTROY_RCPARM X'F0' An invalid number of

parameters was passed to the

callable services request.

BPEUXCSV_NSDESTROY_RCINT X'F4' An internal BPE error

occurred.

Example:

The following example shows how to destroy the named storage area associated

with the 16-byte name in storage whose first byte is at label NSNAME.

BPE Callable Service Example: Sharing Data Among Exit

Routines

As an example of the use of callable services, consider the case where you have a

set of user exit routines of varying types that all need to share some common

information. For this example, assume that the following three types of exit

routines are being used:

v An initialization exit routine that gets control when the address space is first

started. Assume that this exit routine runs before any mainline processing is

done (so you can be sure that the other two exit routines won’t be called until

the initialization exit routine has returned).

v A processing exit routine that gets control whenever a particular event occurs in

the address space that needs user exit routine provided information.

v A termination exit routine that gets control when the address space is ending.

Important: These particular user exit routines are presented here for example

purposes only. These examples should not be assumed to be usable exit routines.

 BPEUXCSV SERVICECODE=BPEUXCSV_NSDESTROY, X

 PARMS=(NSNAME), X

 TOKEN=UXPL_CSTOKENP, X

 SL=(1)

 . . .

 NSNAME DC XL16’01C1C2C300000000F1F2F3F4006D2748’ Binary names OK

General Interface Info

80 Base Primitive Environment Guide and Reference

Sample Initialization Exit Routine

The initialization exit routine uses the create named storage service to obtain a

16-byte area of storage with the name ZZZ_EXIT_AREA. The storage is mapped by

the following DSECT (which is assumed to be available in all of the modules).

 The initialization exit routine then uses the load module service to load a module

named ZZZUXTB0 (a table that is needed in this example to pass information to

the other user exit routines). The initialization exit routine stores the name of the

table module in the named storage area field ZZZ_TABLE_NAME, and the address

of the loaded table in field ZZZ_TABLE_ADDR. A routine using a table may not

be required for your application.

A sample initialization exit routine that performs these functions is shown in

Figure 13 on page 82. Note that the code shown in Figure 13 on page 82, Figure 14

on page 83, and Figure 15 on page 84 is mainline path only. To keep the examples

simple, error paths and exception handling code are not shown.

 ZZZ_EXIT_AREA DSECT ,

 ZZZ_TABLE_NAME DS CL8 Name of table module

 ZZZ_TABLE_ADDR DS A Address of table module

 DS F Available

 ZZZ_EXIT_AREA_L EQU *-ZZZ_EXIT_AREA

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 81

Sample Processing Exit Routine

The processing exit routine obtains the address of the table module that was

loaded by the initialization exit routine. For optimum performance, the processing

exit routine uses the first word of the static work area that BPE passes to save the

address of the shared storage area.

On entry, the processing exit routine checks this word of storage. If this word is

non-zero, the processing routine uses this address as the shared storage area

pointer. If the first word is zero, the processing exit routine invokes the named

storage retrieve service to get the address of the shared storage. The processing exit

routine then saves the address in the static storage area. This technique minimizes

the number of BPE requests for callable services that this exit routine must make

 INITEXIT CSECT ,

 INITEXIT AMODE 31

 INITEXIT RMODE ANY

 STM 14,12,12(13) Save caller’s registers

 LR 12,15 Move module entry pt to R12

 USING INITEXIT,12 Address module base register

 L 13,8(,13) Chain to 2nd provided save area

 LR 11,1 Move exit parmlist to R11

 USING BPEUXPL,11 Address std BPE user exit PL

 L 10,UXPL_DYNAMICWAP Get 512-byte dynamic storage ptr

 USING DYNSTG,10 Address module’s dynamic storage

 BPEUXCSV SERVICECODE=BPEUXCSV_NSCREATE, Create named stg X

 PARMS=(NSNAME,ZZZ_EXIT_AREA_L), for the exits X

 TOKEN=UXPL_CSTOKENP, X

 SL=UXCSVPL

 LTR 15,15 Did NSCreate work?

 BNZ ERROR1 No, go handle error

 LR 9,1 Yes, named storage ptr to R9

 USING ZZZ_EXIT_AREA,9 Address using "ZZZ" DSECT

 MVC ZZZ_TABLE_NAME,TBLNAME Set name of table module

 BPEUXCSV SERVICECODE=BPEUXCSV_LOAD, Load the table X

 PARMS=(TBLNAME,0,0), module for the X

 TOKEN=UXPL_CSTOKENP, exits X

 SL=UXCSVPL

 LTR 15,15 Did LOAD work?

 BNZ ERROR2 No, go handle error

 ST 1,ZZZ_TABLE_ADDR Yes, save table ptr in named stg

 . . . Do any other init exit functions

 XR 15,15 Set zero return code

 L 13,4(,13) Back up to caller’s save area

 L 14,12(,13) Restore caller’s R14

 LM 0,12,20(13) Restore caller’s R0-R12

 BR 14 Return to caller

 DROP 9,10,11,12 Release USING registers

 NSNAME DC CL16’ZZZ_EXIT_AREA ’ Const for named storage

 TBLNAME DC CL8’ZZZUXTB0’ Const for table module name

 LTORG ,

 DYNSTG DSECT , Dynamic storage DSECT

 UXCSVPL DS XL(BPEUXCSV_MAXSL) Space for BPEUXCSV parmlist

 . . . Other dynamic storage fields

 BPEUXPL FUNC=DSECT Include user exit parmlist

 BPEUXCSV FUNC=DSECT Include BPEUXCSV symbols

 END

Figure 13. Sample Initialization Exit Routine

General Interface Info

82 Base Primitive Environment Guide and Reference

(because it needs to do the retrieve only once; on subsequent calls, the address of

the shared storage area is available in the static work area).

A sample processing exit routine that performs these functions is shown in

Figure 14.

Sample Termination Exit Routine

The termination exit routine locates the shared storage area, deletes the loaded

table module using the name that was saved in the shared storage area, and then

destroys the shared area.

A sample termination exit routine that performs these functions is shown in

Figure 15 on page 84.

 PROCEXIT CSECT ,

 PROCEXIT AMODE 31

 PROCEXIT RMODE ANY

 STM 14,12,12(13) Save caller’s registers

 LR 12,15 Move module entry pt to R12

 USING PROCEXIT,12 Address module base register

 L 13,8(,13) Chain to 2nd provided save area

 LR 11,1 Move exit parmlist to R11

 USING BPEUXPL,11 Address std BPE user exit PL

 L 10,UXPL_DYNAMICWAP Get 512-byte dynamic storage ptr

 USING DYNSTG,10 Address module’s dynamic storage

 L 9,UXPL_STATICWAP Get 256-byte static storage ptr

 ICM 8,15,0(9) Is shared stg ptr set?

 BNZ GOTSHRD Yes, continue

 BPEUXCSV SERVICECODE=BPEUXCSV_NSRETRIEVE, Get named stg addr X

 PARMS=(NSNAME), X

 TOKEN=UXPL_CSTOKENP, X

 SL=UXCSVPL

 LTR 15,15 Did NSRetrieve work?

 BNZ ERROR1 No, go handle error

 LR 8,1 Yes, set shrd stg ptr in R8

 ST 8,0(,9) Save in static stg for next time

 GOTSHRD DS 0H

 USING ZZZ_EXIT_AREA,8 Address using "ZZZ" DSECT

 L 7,ZZZ_TABLE_ADDR Get table address

 . . . Do process exit functions

 XR 15,15 Set zero return code

 L 13,4(,13) Back up to caller’s save area

 L 14,12(,13) Restore caller’s R14

 LM 0,12,20(13) Restore caller’s R0-R12

 BR 14 Return to caller

 DROP 8,10,11,12 Release USING registers

 NSNAME DC CL16’ZZZ_EXIT_AREA ’ Const for named storage

 LTORG ,

 DYNSTG DSECT , Dynamic storage DSECT

 UXCSVPL DS XL(BPEUXCSV_MAXSL) Space for BPEUXCSV parmlist

 . . . Other dynamic storage fields

 BPEUXPL FUNC=DSECT Include user exit parmlist

 BPEUXCSV FUNC=DSECT Include BPEUXCSV symbols

 END

Figure 14. Sample Processing Exit Routine

General Interface Info

Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services 83

TERMEXIT CSECT ,

 TERMEXIT AMODE 31

 TERMEXIT RMODE ANY

 STM 14,12,12(13) Save caller’s registers

 LR 12,15 Move module entry pt to R12

 USING TERMEXIT,12 Address module base register

 L 13,8(,13) Chain to 2nd provided save area

 LR 11,1 Move exit parmlist to R11

 USING BPEUXPL,11 Address std BPE user exit PL

 L 10,UXPL_DYNAMICWAP Get 512-byte dynamic storage ptr

 USING DYNSTG,10 Address module’s dynamic storage

 BPEUXCSV SERVICECODE=BPEUXCSV_NSRETRIEVE, Get named stg addr X

 PARMS=(NSNAME), X

 TOKEN=UXPL_CSTOKENP, X

 SL=UXCSVPL

 LTR 15,15 Did NSRetrieve work?

 BNZ ERROR1 No, go handle error

 LR 8,1 Yes, set shrd stg ptr in R8

 USING ZZZ_EXIT_AREA,8 Address using "ZZZ" DSECT

 BPEUXCSV SERVICECODE=BPEUXCSV_DELETE, Delete table X

 PARMS=(ZZZ_TABLE_NAME), module X

 TOKEN=UXPL_CSTOKENP, X

 SL=UXCSVPL

 LTR 15,15 Did DELETE work?

 BNZ ERROR2 No, go handle error

 BPEUXCSV SERVICECODE=BPEUXCSV_NSDESTROY, Destroy named stg X

 PARMS=(NSNAME), X

 TOKEN=UXPL_CSTOKENP, X

 SL=UXCSVPL

 DROP 8 R8 no longer is "ZZZ" area

 LTR 15,15 Did NSDestroy work?

 BNZ ERROR3 No, go handle error

 . . . Do other term exit functions

 XR 15,15 Set zero return code

 L 13,4(,13) Back up to caller’s save area

 L 14,12(,13) Restore caller’s R14

 LM 0,12,20(13) Restore caller’s R0-R12

 BR 14 Return to caller

 DROP 10,11,12 Release USING registers

 NSNAME DC CL16’ZZZ_EXIT_AREA ’ Const for named storage

 LTORG ,

 DYNSTG DSECT , Dynamic storage DSECT

 UXCSVPL DS XL(BPEUXCSV_MAXSL) Space for BPEUXCSV parmlist

 . . . Other dynamic storage fields

 BPEUXPL FUNC=DSECT Include user exit parmlist

 BPEUXCSV FUNC=DSECT Include BPEUXCSV symbols

 END

Figure 15. Sample Termination Exit Routine

General Interface Info

84 Base Primitive Environment Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002, 2006 85

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

86 Base Primitive Environment Guide and Reference

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming Interface Information

This publication is intended to help the customer use the IMS Base Primitive

Environment (BPE) external interfaces. The IMS Version 9: Base Primitive

Environment Guide and Reference primarily documents product-sensitive

programming interface and associated guidance information provided by IMS.

Product-sensitive programming interfaces allow the customer installation to

perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or

tuning of IMS. Use of such interfaces creates dependencies on the detailed design

or implementation of the IBM software product. Product-sensitive programming

interfaces should be used only for these specialized purposes. Because of their

dependencies on detailed design and implementation, it is to be expected that

programs written to such interfaces may need to be changed in order to run with

new product releases or versions, or as a result of service.

General-use programming interfaces allow the customer to write programs that

obtain the services of IMS.

General-use programming interface and associated guidance information is

identified where it occurs, either by an introductory statement to a chapter or topic

or by the following marking: General-use programming interface and associated

guidance information....

Diagnosis, modification or tuning information is provided to help the customer

diagnose, modify, or tune IMS.

Attention: Do not use this diagnosis, modification or tuning information as a

programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, either

by an introductory statement to a chapter or topic or by the following marking:

Diagnosis, Modification or Tuning Information....

Trademarks

The following terms are trademarks of the International Business Machines

Corporation in the United States, other countries, or both:

 AD/Cycle BookManager

C/370 CICS

CICSPlex COBOL /370

Notices 87

|||

||
||

DataPropagator DB2

DB2 Universal Database DFSMSdfp

DFSMSdss DFSMS/MVS

DFSORT ES/9000

ESCON IBM

IMS Language Environment

MVS MVS/DFP

NetView Parallel Sysplex

PR/SM QMF

RACF RMF

SAA SP

Tivoli VisualGen

VTAM WebSphere

z/OS

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc., in the Unites States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

88 Base Primitive Environment Guide and Reference

||
||
||
||
||
||
||
||
||
||
||
||
||
||
|

Bibliography

This bibliography lists all of the information in

the IMS Version 9 library.

v External Security Interface (RACROUTE) Macro

Reference for MVS, GC28-1366

v MVS/DFP™ Access Method Services for VSAM

Catalog, SC26-4570

v z/OS MVS Initialization and Tuning Reference,

SC28-1452

v z/OS MVS Programming: Authorized Assembler

Services Guide, GC28-1467

v z/OS MVS Setting Up a Sysplex, GC28-1449

v z/OS MVS Programming: Sysplex Services Guide,

GC28-1495

v z/OS MVS System Commands, GC28-1442

v z/OS MVS Programming: Assembler Services

Guide, GC28-1466

v z/OS MVS Setting Up a Sysplex, GC28-1779

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

IMS Version 9: Common Queue

Server Guide and Reference

CQS SC18-7815

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

Title Acronym Order

number

IMS Version 9: Customization

Guide

CG SC18-7817

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure Analysis

Structure Tables (FAST) for

Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java Guide

and Reference

JGR SC18-7821

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

IMS Version 9: Messages and

Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages and

Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

Supplementary Publications

 Title Order number

IMS Connector for Java 2.2.2 and 9.1.0.1

Online Documentation for WebSphere

Studio Application Developer Integration

Edition 5.1.1

SC09-7869

IMS Version 9 Fact Sheet GC18-7697

© Copyright IBM Corp. 2002, 2006 89

Title Order number

IMS Version 9: Licensed Program

Specifications

GC18-7825

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide, Volume

1

SC34-4822

90 Base Primitive Environment Guide and Reference

Index

Special characters
* (asterisk)

BPE trace table type 9

CQS trace table type 10

OM trace table type 12

RM trace table type 13

SCI trace table type 13

A
abend codes 2

accessibility xiv

keyboard xiv

shortcut keys xiv

address spaces
customizing 47

monitoring 47

asynchronous work element (AWE) 9

AWE (asynchronous work element) 9

AWE server type 58

AWE services statistics area 57

B
Base Primitive Environment (BPE)

associating exit types with exit

routines 17

components that use BPE 1

customizing address spaces 47

defining 5

gathering statistics 49

monitoring address spaces 47

sample configuration 15

service provided 1

sharing configuration parameters 7

specify language 6

specify trace level 6

system statistics area 50

trace table types 8

tracing processing 8

BPE (Base Primitive Environment)
associating exit types with exit

routines 17

components that use BPE 1

customizing address spaces 47

defining 5

gathering statistics 49

monitoring address spaces 47

sample configuration 15

service provided 1

sharing configuration parameters 7

specify language 6

specify trace level 6

system statistics area 50

trace table types 8

tracing processing 8

BPE commands
DISPLAY USEREXIT 37

invocation 26

REFRESH USEREXIT 44

BPE commands (continued)
specify IMS component command

parameters 26

syntax 25

Syntax, verb only format 25

Syntax, verb-resource type 25

wildcard character support 26

BPE configuration PROCLIB member
keywords 5

recommendations 6

specify 5

BPE DISPLAY VERSION command
format 36

output 36

usage 36

BPE exit routine PROCLIB member
EXITMBR parameter 15

BPE statistics area
BPE AWE statistics area 57

BPE CBS statistics area 56

BPE dispatcher statistics area 54

BPE storage services statistics

area 59

BPE system statistics 51

BPE TCB statistics table 55

recommendations 51

statistics offset table 53

BPE Statistics exit routine 49

BPE trace table types
* (asterisk) 9

AWE (asynchronous work element) 9

CBS (control block service) 9

CMD (command trace table) 9

DISP (dispatcher trace table) 9

ERR (error trace table) 9

HASH (hash trace table) 9

LATC (latch trace table) 9

SSRV (system services trace table) 10

STG (storage service trace table) 10

USRX (user exit routine trace

table) 10

BPE user-supplied exit routines
abends in 66

BPEUXCSV macro 66

callable services 66

dynamic work areas 64

environment 65

execution environment 61

exit routines, calling subsequent 64

general information 61

initialization sample 81

initialization-termination 47

interface information 61

interfaces and services 61

Language Environment, and 47

performance considerations 65

processing sample 82

recommendations 47, 61, 66

reentrant 65

refresh 44

registers 65

BPE user-supplied exit routines

(continued)
sharing data 80

standard parameter list 61

static work areas 63

statistics exit routine 49

termination sample 83

work areas 63

BPEUXCSV macro 66

environmental requirements 67

examples 69

other macro requirements 68

performance implications 68

register information 68

restrictions and limitations 68

return from 71

syntax 68

C
callable services

BPE user-supplied exit routines 66

BPEUXCSV macro 66

example 80

functions of 67

sharing data 80

CBS (control block service) 9

CBS (control block services) statistics

area 56

CMD (command trace table) 9

command trace table (CMD) 9

commands 25

Common Service Layer (CSL)
OM trace table types 12

RM trace table types 13

SCI trace table types 14

control block service (CBS) 9

CQS exit routine PROCLIB member
EXITMBR parameter 15

CQS trace table types
* (asterisk) 10

CQS (common queue server trace

table) 10

ERR (error trace table) 10

INTF (interface trace table) 10

STR (structure trace table) 11

create named storage service
example 78

output 78

parameters 78

CSL (Common Service Layer)
OM trace table types 12

RM trace table types 13

SCI trace table types 14

D
delete module service

example 77

output 77

© Copyright IBM Corp. 2002, 2006 91

delete module service (continued)
parameters 77

destroy named storage service
example 80

output 80

parameters 79

disability xiv

DISP (dispatcher trace table) 9

dispatcher statistics area 54

dispatcher trace table (DISP) 9

DISPLAY TRACETABLE command 28

BPE-defined trace table types 28

CQS-defined trace tables 28

OM-defined trace tables 29

RM-defined trace tables 29

SCI-defined trace table types 29

DISPLAY USEREXIT command
BPE user exit types 37

CQS user exit types 37

examples 41

format 37

OM user exit types 37

output 40

RM user exit types 38

SCI user exit types 38

usage 37

dynamic work areas 64

E
ERPL (error parameter list trace

table) 14

ERR (error trace table)
BPE trace table type 9

CQS trace table type 10

OM trace table type 12

RM trace table type 13

SCI trace table type 14

error parameter list trace table

(ERPL) 14

error trace table (ERR)
BPE trace table type 9

CQS trace table type 10

OM trace table type 12

RM trace table type 13

SCI trace table type 14

EXITDEF statement
BPE types 18

CQS types 19

HWS types 19

keywords 17

OM types 19

RM types 19

SCI types 20

static work areas, and 64

EXITMBR parameter
BPE exit routine PROCLIB

member 15

CQS exit routine PROCLIB

member 15

HWS exit routine PROCLIB

member 15

ims_component 15

member_name 15

OM exit routine PROCLIB

member 15

EXITMBR parameter (continued)
RM exit routine PROCLIB

member 15

SCI exit routine PROCLIB

member 15

F
format of standard BPE user exit

parameter list 61

free storage service
example 74

output 74

parameters 73

G
get storage service

examples 73

output 72

parameters 71

H
HASH (hash trace table) 9

hash trace table (HASH) 9

HWS exit routine PROCLIB member
EXITMBR parameter 15

I
IMS components 1

Init-Term exit routine
contents of registers 48

parameter list 48

recommendations 48

interface information 61

interface parameter trace table

(INTP) 14

interface trace table (INTF)
CQS trace table type 10

SCI trace table type 14

INTF (interface trace table)
CQS trace table type 10

SCI trace table type 14

INTP (interface parameter trace

table) 14

L
LANG parameter

PROCLIB member 6

LATC (latch trace table) 9

latch trace table (LATC) 9

load module service
examples 76

output 75

M
messages and codes 2

module service load 74

parameters 75

O
OM exit routine PROCLIB member

EXITMBR parameter 15

OM trace table types
* (asterisk) 12

CSL 12

ERR 12

OM 12

PLEX 12

recommendations 12

P
parameter lists

BPE Statistics user exit 49

create named storage service 78

delete module service 77

destroy names storage service 79

free storage service 73

get storage services 71

initialization and termination user exit

routine 48

load module service 75

retrieve named storage service 79

standard BPE user exit 61

Structure Statistics user exit 50

PLEX
OM trace table type 12

RM trace table type 13

SCI trace table type 14

PROCLIB
EXITMBR parameter 15

STATINTV parameter 15

PROCLIB members
format rules 5

general information 5

LANG parameter 6

sharing configurations 7

TRCLEV 6

R
REFRESH USEREXIT command

considerations 45

examples 45

format 42

output 45

recommendations 45

static work area, and 64

usage 42

retrieve named storage service
example 79

output 79

parameters 79

RM exit routine PROCLIB member
EXITMBR parameter 15

RM trace table types
* (asterisk) 13

CSL 13

ERR 13

PLEX 13

recommendations 13

RM 13

92 Base Primitive Environment Guide and Reference

S
Sample

BPE configuration file 15

BPE user exit list PROCLIB

member 22

combined user exit list PROCLIB

member 23

CQS user exit list PROCLIB

member 20

initialization exit routine 81

OM user exit list PROCLIB

member 21

processing exit routine 82

RM user exit list PROCLIB

member 21

SCI user exit list PROCLIB

member 22

termination exit routine 83

SCI exit routine PROCLIB member
EXITMBR parameter 15

SCI trace table types
* (asterisk) 13

CSL 14

ERPL 14

ERR 14

INTF 14

INTP 14

PLEX 14

recommendations 14

Sharing BPE configuration parameters 7

shortcut keys
keyboard xiv

specify exit list PROCLIB member

name 15

specify language 6

specify time intervals 15

specify trace level 6

SRT (structure trace table) 11

SSRV (system services trace table) 10

standard BPE user exit parameter list 61

static work areas 63

Statistics exit routine
contents of registers 49

parameters 49

statistics offset table 53

STG (storage service trace table) 10

storage service trace table (STG) 10

storage services
create named storage service 77

destroy named storage service 79

free storage service 73

get storage service 71

retrieve named storage service 78

storage services statistics area 59

structure trace table (SRT) 11

subsequent BPE exit routines, calling 64

syntax diagram
how to read x

system services trace table (SSRV) 10

system statistics area
addresses 51

BPE AWE statistics area 57

BPE CBS statistics area 56

BPE dispatcher statistics area 54

BPE storage services statistics

area 59

BPE TCB statistics table 55

system statistics area (continued)
length of 51

offsets 51

pointers 51

recommendations 51

statistics offset table 53

structure of 51

T
TCB statistics table 55

TRACETABLE 27

command verbs 27

DISPLAY TRACETABLE command

output 30

format of DISPLAY

TRACETABLE 27

format of UPDATE TRACETABLE 32

UPDATE TRACETABLE command

output 35

usage of DISPLAY TRACETABLE 28

usage of UPDATE TRACETABLE 32

TRCLEV
BPE trace table statements 8

BPE trace table types 8

parameters 7

PROCLIB members 6

RM trace table types 13

U
UPDATE TRACETABLE command 32

BPE-defined trace table types 33

CQS-defined trace table types 33

IMS Connect—defined trace table

types 28, 33

OM-defined trace table types 34

RM-defined trace table types 34

SCI-defined trace table types 34

user exit list PROCLIB member
BPE exit list PROCLIB member 17

sample BPE 22

sample CSQ 20

sample of combined 23

sample OM 21

sample RM 21

sample SCI 22

user exit routine abends 66

user exit routine trace table (USRX) 10

user-supplied exit routines
abends in 66

BPE Statistics 49

BPEUXCSV macro 66

call subsequent exit routines 64

callable services 66

dynamic work areas 64

environment 65

execution environment 61

general information 61

initialization sample 81

initialization-termination 47

interfaces and services 61

performance considerations 65

processing sample 82

recommendations 47, 61, 66

reentrant 65

user-supplied exit routines (continued)
refresh 44

registers 65

specifying owner’s type 18

standard parameter list 61

static work areas 63

termination sample 83

work areas 63

USEREXIT commands 36

USRX (user exit routine trace table) 10

V
virtual storage

free 73

get 71

virtual storage, freeing 73

virtual storage, getting 71

W
work areas for BPE user exit routines

dynamic work area 64

static work area 63

Index 93

94 Base Primitive Environment Guide and Reference

����

Program Number: 5655-J38

Printed in USA

SC18-7813-02

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

Ba
se

Pr

im
iti

ve

En

vi
ro

nm
en

t G
ui

de

an

d
R

ef
er

en
ce

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	Terminology and Related Publications
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	How to Send Your Comments

	Summary of Changes
	Changes to the Current Edition of This Book for Version 9
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility features for IMS
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Chapter 1. Introduction to Base Primitive Environment
	Chapter 2. BPE Definition and Tailoring
	General BPE PROCLIB Member Information
	BPE Configuration Parameter PROCLIB Member
	BPECFG= LANG Parameter
	BPECFG= TRCLEV Parameter
	BPE Trace Table Types
	CQS Trace Table Types
	IMS Connect Trace Table Types
	OM Trace Table Types
	RM Trace Table Types
	SCI Trace Table Types

	BPECFG= EXITMBR Parameter
	BPECFG= STATINTV Parameter
	Sample BPE Configuration File

	BPE Exit List PROCLIB Member
	BPE EXITMBR= EXITDEF Parameter
	BPE EXITDEF Types
	CQS EXITDEF Types
	HWS EXITDEF Types
	OM EXITDEF Types
	RM EXITDEF Types
	SCI EXITDEF Types

	Sample CQS User Exit List PROCLIB Member
	Sample OM User Exit List PROCLIB Member
	Sample RM User Exit List PROCLIB Member
	Sample SCI User Exit List PROCLIB Member
	Sample BPE User Exit List PROCLIB Member
	Sample Combined User Exit List PROCLIB Member

	Chapter 3. BPE Commands
	BPE Command Syntax and Invocation
	BPE Command Invocation
	BPE Wildcard Character Support
	Specifying IMS Component Command Parameters

	BPE TRACETABLE Commands
	Format of BPE DISPLAY TRACETABLE Command
	Usage of BPE DISPLAY TRACETABLE Command
	BPE DISPLAY TRACETABLE Command Output
	Command Example 1
	Command Example 2
	Command Example 3
	Command Example 4
	Command Example 5

	Format of BPE UPDATE TRACETABLE Command
	Usage of BPE UPDATE TRACETABLE Command
	BPE UPDATE TRACETABLE Command Output
	Command Example 1
	Command Example 2

	BPE DISPLAY VERSION Command
	Format of BPE DISPLAY VERSION Command
	Usage of BPE DISPLAY VERSION Command
	DISPLAY VERSION Command Output
	Command Example 1
	Command Example 2

	BPE USEREXIT Commands
	Format of BPE DISPLAY USEREXIT Command
	Usage of BPE DISPLAY USEREXIT Command
	BPE DISPLAY USEREXIT Command Output
	Command Example 1
	Command Example 2
	Command Example 3
	Command Example 4
	Command Example 5

	Format of BPE REFRESH USEREXIT Command
	Usage of BPE REFRESH USEREXIT Command
	Refreshing User Exits in BPE
	Considerations for Refreshing User Exits

	BPE REFRESH USEREXIT Command Output
	Command Example 1
	Command Example 2

	Chapter 4. BPE User-Supplied Exit Routines
	General BPE User-Supplied Exit Routine Information
	BPE Initialization-Termination User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	BPE Initialization and Termination Parameter List

	BPE Statistics User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	BPE Statistics Exit Routine Parameter List
	BPE System Statistics Area

	Chapter 5. BPE User-Supplied Exit Routine Interfaces and Services
	General BPE User-Supplied Exit Routine Interface Information
	Standard BPE User Exit Parameter List
	Work Areas Provided by BPE
	The Static Work Area
	The Dynamic Work Area

	Calling Subsequent Exit Routines in BPE
	BPE User-Supplied Exit Routine Environment
	BPE User Exit Routine Performance Considerations
	Abends in BPE User-Supplied Exit Routines

	BPE User-Supplied Exit Routine Callable Services
	BPEUXCSV Macro Description
	BPEUXCSV Environmental Requirements
	BPEUXCSV Restrictions and Limitations
	BPEUXCSV Register Information
	BPEUXCSV Performance Implications
	Other Macro Requirements
	BPEUXCSV Macro Syntax
	FUNC = CALL
	FUNC = DSECT
	Parameter Descriptions

	Return from BPEUXCSV
	BPEUXCSV Get Storage Service
	BPEUXCSV Free Storage Service
	BPEUXCSV Load Module Service
	BPEUXCSV Delete Module Service
	BPEUXCSV Create Named Storage Service
	BPEUXCSV Retrieve Named Storage Service
	BPEUXCSV Destroy Named Storage Service

	BPE Callable Service Example: Sharing Data Among Exit Routines
	Sample Initialization Exit Routine
	Sample Processing Exit Routine
	Sample Termination Exit Routine

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

